Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T01:46:42.776Z Has data issue: false hasContentIssue false

A Basic Study of the GeH4 + H2 RF Discharge

Published online by Cambridge University Press:  16 February 2011

Paul Wickboldt
Affiliation:
Division Of Applied Sciences, Harvard University, Cambridge, Ma 02138
Dawen Pang
Affiliation:
Division Of Applied Sciences, Harvard University, Cambridge, Ma 02138
William Paul
Affiliation:
Division Of Applied Sciences, Harvard University, Cambridge, Ma 02138
Get access

Abstract

Extensive studies were made of GeH4+H2 and SiH4+H2 rf discharges used in depositing a-Ge:H and a-Si:H films. Residual Gas Analysis (RGA) Measurements were made of the gaseous species generated by these discharges. Data from the measurements of SiH4 + H4 discharges were entirely consistent with the generally accepted models of silane discharge chemistry and a-Si:H film deposition. Identical experiments for GeH4 + H2 discharges show that the chemistry for these discharges cannot be interpreted using a model similar to that proposed for silane. A review of the literature reveals differences between the stability of GeH2 and SiH2 radicals. These differences, usually overlooked by other workers, can account for the observed differences in the RGA results, as well as offer an explanation as to why it is difficult to deposit structurally homogeneous a-Ge:H.

Other RGA Measurements and electrode potential measurements are compared to the properties of a-Ge:H films that are deposited under different deposition conditions. Overall, the results strongly suggest that the chemistry which is beneficial for homogeneous film growth is promoted by a high electron temperature in the discharge. This conclusion is shown to be consistent with the results summarized above.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Turner, W.A., Jones, S.J., Pang, D., Bateman, B.F., Chen, J.H., Li, Y.M., Marques, F.C., Wetsel, A.E., Wickboldt, P., Paul, W., Bodart, J., Norberg, R.E., Zawawi, I.EI and Theye, M.L., J. Appl. Phys. 02 (12), 7430 (1990).CrossRefGoogle Scholar
2. Karg, F. H., Hirschauer, B., Kasper, W. and Pierz, K, Sol. Energy Mat. 22 (2&3), 169 (1991).Google Scholar
3. Yehoda, J. E., Yang, B., Vedam, K. and Messier, R., J. Vac. Sci. Technol. A6(3), 1631 (1988); andGoogle Scholar
Aoki, T., Nishikawa, Y., Li, H. and Hirose, M., J. Non. Cryst. Sol. 137&138. 749 (1991).Google Scholar
4. See for example: Bales, G.S. and Zangwill, A., J. Vac. Sci. Technol. A 2 (1). 145 (1991).Google Scholar
5. Wickboldt, P., Jones, S.J., Marques, F.C., Pang, D., Turner, W.A., Wetsel, A.E., Paul, W. and Chen, J.H., Phil. Mag. B 64 (6), 655 (1991).CrossRefGoogle Scholar
6. See for example: Köhler, K., Coburn, J.W., Horne, D.E. and Kay, E., J. Appl. Phys. 57(1), 59 (1985).Google Scholar
7. Wickboldt, P., Ph D.Thesis (Harvard University, 1993).Google Scholar
8. Thompson, B.E., Allen, K.D., Richards, A.D. and Sawin, H.H., J. Appl. Phys. 52 (6), 1890 (1986).CrossRefGoogle Scholar
9. Kasper, W., Plätmer, R. and Eichmeier, J., J. Non. Cryst. Sol. 137&138. 799 (1991).Google Scholar
10. Gallagher, A., Doyle, J. and Doughty, D., Mat. Res. Soc. Symp. Proc. 142, 23 (1989).Google Scholar
11. Veprek, S. and Veprek-Heijman, M.G.J., Plasma Chem. and Plasmsa Proc. 11(3), 323 (1991).CrossRefGoogle Scholar
12. Jasinski, J.M. and Chu, J.O., J. Chem. Phys. 88 (3), 1678 (1988).Google Scholar
13. Kushner, M.J., J. Appl. Phys. 63. (8), 2532 (1988).Google Scholar
14. Doyle, J.R., Doughty, D.A. and Gallagher, A., J. Appl. Phys. 68 (9), 4375 (1990).Google Scholar
15. Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yuuki, A. and Perrin, J., Surface Science 227. 50 (1990).Google Scholar
16. Matsuda, A. and Tanaka, K., J. Appl. Phys. 69 (7), 2351 (1986).Google Scholar
17. Doyle, J.R., Doughty, D.A. and Gallagher, A., J. Appl. Phys. 69 (8), 4169 (1991).CrossRefGoogle Scholar
18. Veprek, S., Glatz, F. and Konwitschny, R., J. Non. Cryst. Sol. 137&138. 779 (1991).CrossRefGoogle Scholar
19. Flesch, G.D. and Svec, H.J., Internat. J. Mass. Spec. Ion. Proc. 90, 1 (1989). also:CrossRefGoogle Scholar
Perrin, J. and Aarts, J.F.M., Chem. Phys. SO, 351 (1983).Google Scholar
20. Ruscic, B., Schwarz, M. and Berkowitz, J., J. Chem. Phys. 22 (3), 1865 (1990).Google Scholar
21. Newman, C.G., O'Neal, H.E., Ring, M.A., Leska, F. and Shipley, N., Int. J. Chem. Kin. 11, 1167 (1979).Google Scholar
22. Newman, C.G., Dzarnoski, J., Ring, M.A. and O'Neal, H.E., Int. J. Chem. Kin. 12, 661 (1980).Google Scholar
23. Belluati, R., Castiglioni, M., Volpe, P. and Gennaro, M.C., Polyhedron 6. (3), 441 (1987).CrossRefGoogle Scholar