Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-cssqh Total loading time: 0.154 Render date: 2021-06-13T22:40:56.363Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A Bacterium's Sense of “Touch”

Published online by Cambridge University Press:  01 February 2011

Ruchirej Yongsunthon
Affiliation:
yongsuntr@Corning.com, Corning Incorporated, Molecular Spectroscopy and Separations, Corning Incorporated, SP-FR-01, R1S12L/23L, Corning, NY 14831, Corning, NY, 14831, United States
Brian H. Lower
Affiliation:
brian.lower@pnl.gov, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
Vance G. Fowler
Affiliation:
fowle003@mc.duke.edu, Duke University, Durham, NC, 27710, United States
Emily Alexander
Affiliation:
emily.alexander@duke.edu, Duke University, Durham, NC, 27710, United States
Steven K. Lower
Affiliation:
lower.9@osu.edu, Ohio State University, Columbus, OH, 43210, United States
Get access

Abstract

The sheer number of bacteria living on solid surfaces makes a compelling argument for the existence of surface sensing mechanisms. However, surface sensing abilities have not been widely studied in bacteria, because such abilities are not macroscopically observable in attached organisms with limited mobility. We report experimental evidence that attached Staphylococcus aureus cells recognize the steep gradient near their substrate interface and localize substrate-specific biomolecules toward that region. We present Atomic Force Microscopy-based affinity maps which reflect the cells' biochemical sensory response to the substrate and provide a unique view of regions indicating specific binding activity and bond resilience.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Whitman, W. B., Coleman, D. C., and Wiebe, W. J., Proc. Natl. Acad. Sci. USA 95: 65786583 (1998)Google Scholar
2. Dusenbery, D. B., Biophys. J. 74: 22722277 (1998)CrossRefGoogle Scholar
3. Thar, R., Kuhl, M., Proc. Natl. Acad. Sci. USA 100: 57485753 (2002)CrossRefGoogle Scholar
4. Proctor, R. A, Mosher, D. F., and Olbrantz, P. J., J. Biol. Chem. 257: 1478814794 (1982)Google Scholar
5. Green, C., McDevitt, D., Francois, P., Vaudaux, P.E., Lew, D.P., and Foster, T.J. Molecul. Microbiol. 17: 11431152 (1995)CrossRefGoogle Scholar
6. Foster, T. J. and Hook, M. (1998) Trends in Microbiology 6(12), 484488 (1998)CrossRefGoogle Scholar
7. Lowy, F.D., New Engl. J. Med. 339:520532 (1998)CrossRefGoogle Scholar
8. Cleveland, J. P., Manne, S., Bocek, D., Hansma, P. K., Rev. Sci. Instrum. 64(2): pp. 403405 (1992)CrossRefGoogle Scholar
9. Lower, B. H., Yongsunthon, R., Vellano, F. P., Lower, S. K., J. Bacteriol. 187:21272137 (2005)CrossRefGoogle Scholar
10. Vadillo-Rodriguez, V., Busscher, H. J., Norde, W., Vries, J. de, Dijkstra, R. J. B., Stokroos, I., van der Mei, H.C., Appl. Environ. Microb. 70: 54415446 (2004)CrossRefGoogle Scholar
11. Camesano, T. A., Natan, M. J., Logan, B. E., Langmuir 16(10) 45634572 (2000)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Bacterium's Sense of “Touch”
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Bacterium's Sense of “Touch”
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Bacterium's Sense of “Touch”
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *