Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T18:25:49.294Z Has data issue: false hasContentIssue false

Back-To-Back Amorphous Silicon Diodes For Driving Lc Displays

Published online by Cambridge University Press:  28 February 2011

Joseph Dresner*
Affiliation:
RCA Laboratories, Princeton, NJ 08540
Get access

Abstract

This paper describes the preparation and electrical characteristics of a-Si:H p-i-n-i-p and n-i-p-i-n thin film diodes suitable for driving monochrome liquid crystal displays with more than 500 lines. The symmetrical current-voltage curves in the reverse breakdown regime can ge described by i=i exp (E/Eo) where E ≃9×104 V/cm. In the range 20–125°C, the current is thermally activated with an energy of 0.25eV. The response time to applied voltage pulses is ≤ 10 us. The stability of the electrical characteristics is adequate for at least 104 hours of operation in an liquid crystal display.

Electrical characteristics indicate that the reverse breakdown current is a tunneling current injected into the i-layer and that electrons are likely to be dominant.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alt, P. M. and Pleshko, P., IEEE Trans. Electron Devices ED–21, 146 (1974).Google Scholar
2. Ast, D., IEEE Trans. Electron Devices ED–30, 532 (1983).Google Scholar
3. Castleberry, D. E., Becker, C. A. and Levinson, L. M., Proc. SID Symp. Dig. Tech. Papers, 21, 246 (1982).Google Scholar
4. Baraff, D. R., Long, J. R., MacLaurin, B. K., Miner, C. J. and Streater, R. W., Proc. SID Dig. Tech. Papers, 22, 310 (1981).Google Scholar
5. Gibson, R. A., LeComber, P. G. and Spear, W. E., Appl. Phys. 21, 307 (1980).Google Scholar
6. Gibson, R. A., Spear, W. E., LeComber, P. G., and Snell, A. J., J. Non-Cryst. Solids, 35,36,725 (1980).CrossRefGoogle Scholar
7. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977); J. Appl. Phys. 51 3262 (1980).Google Scholar
8. Lang, D. V., Cohen, J. D. and Harbison, J. P., Phys. Rev. Letters 48, 421 (1982).Google Scholar
9. Spear, W. E., Adv. in Physics, 26, 811 (1977); D. V. Lang, J. D. Cohen and J. P. Harbison, Phys. Rev. B25,5285 (1982).Google Scholar
10. Jan, Z. S., Bube, R. H. and Knights, J. C., J. Appl. Phys. 51, 3278 (1980); B. von Roedern, L. Ley, M. Cardona and F. W. Smith, Phil. Mag. B40,433 (1979); D. I. Jones, P. G. LeComber and W. E. Spear, Phil. Mag. 36,541 (1977).Google Scholar
11. Tsai, C. C., Phys. Rev. B 19, 2041 (1979).CrossRefGoogle Scholar
12. Spear, W. E., LeComber, P. G. and Snell, A. J., Phil. Mag. B 38, 303 (1978); D. J. Szostak and B. Goldstein, J. Appl. Phys. 56,522 (1184).Google Scholar