Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T17:07:46.575Z Has data issue: false hasContentIssue false

The a-Si:H Growth Mechanism: Temperature Study of the SiH3 Surface Reactivity and the Surface Silicon Hydride Composition During Film Growth

Published online by Cambridge University Press:  01 February 2011

W.M.M. Kessels
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Y. Barrell
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
P.J. van den Oever
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J.P.M. Hoefnagels
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
M.C.M. van de Sanden
Affiliation:
Dept. of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

We report on two experimental studies carried out to reveal insight into the interaction of SiH3 radicals with the a-Si:H surface as assumed essential in the a-Si:H growth mechanism. The surface reaction probability β of SiH3 on the a-Si:H has been investigated by spectroscopic means as a function of the substrate temperature (50 - 450°C) using the time-resolved cavity ringdown technique. The silicon hydrides –SiHx on the a-Si:H surface during deposition have been studied by the combination of in situ attenuated total reflection infrared spectroscopy and argon ion-induced desorption of surface hydrogen. For SiH3 dominated plasma conditions, it is found that the surface reactivity of SiH3 is independent of the substrate temperature with β = 0.30±0.03 whereas the silicon hydride composition on the a-Si:H surface changes drastically for increasing substrate temperature (from –SiH3 to =SiH2 to ≡SiH). The implications of these observations for the a-Si:H growth mechanism are addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kessels, W.M.M., Smets, A.H.M., Marra, D.C., Aydil, E.S., Schram, D.C., and Sanden, M.C.M. van de, Thin Solid Films 383, 154 (2001).Google Scholar
[2] Ramalingam, S., Maroudas, D., and Aydil, E.S., J. Appl. Phys. 86, 2872 (1999).Google Scholar
[3] Ramalingam, S., Maroudas, D., Aydil, E.S., and Walch, S.P., Surf. Sci. 418, L8 (1998).Google Scholar
[4] Gupta, A., Yang, H., and Parsons, G.N., Surf. Sci. 496, 307 (2002).Google Scholar
[5] Dewarrat, R. and Robertson, J., Appl. Phys. Lett. 82, 883 (2003).Google Scholar
[6] Walch, S., Ramalingam, S., Aydil, E.S., and Maroudas, D., Chem. Phys. Lett. 329, 304 (2000).Google Scholar
[7] Kessels, W.M.M., Severens, R.J., Smets, A.H.M., Korevaar, B.A., Adriaenssens, G.J., Schram, D.C., and Sanden, M.C.M. van de, J. Appl. Phys. 89, 2404 (2001).Google Scholar
[8] Kessels, W.M.M., Boogaarts, M.G.H., Hoefnagels, J.P.M., Schram, D.C., and Sanden, M.C.M. van de, J. Vac. Sci. Technol. A 19, 1027 (2001).Google Scholar
[9] Kessels, W.M.M., Hoefnagels, J.P.M., Boogaarts, M.G.H., Schram, D.C., and Sanden, M.C.M. van de, J. Appl. Phys. 89, 2065 (2001).Google Scholar
[10] Kessels, W.M.M., Leewis, C.M., Sanden, M.C.M. van de, and Schram, D.C., J. Appl. Phys. 86, 4029 (1999).Google Scholar
[11] Kessels, W.M.M., Leroux, A., Boogaarts, M.G.H., Hoefnagels, J.P.M., Sanden, M.C.M. van de, and Schram, D.C., J. Vac. Sci. Technol. A 19, 467 (2001).Google Scholar
[12] Hoefnagels, J.P.M., Stevens, A.A.E., Boogaarts, M.G.H., Kessels, W.M.M., and Sanden, M.C.M. van de, Chem. Phys. Lett. 360, 189 (2002).Google Scholar
[13] Hoefnagels, J.P.M., Barrell, Y., Kessels, W.M.M., and Sanden, M.C.M. van de, to be published.Google Scholar
[14] Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yuuki, A., and Perrin, J., Surf. Sci. 27, 50 (1990).Google Scholar
[15] Kessels, W.M.M., Sanden, M.C.M. van de, Severens, R.J., and Schram, D.C., J. Appl. Phys. 87, 3313 (2000).Google Scholar
[16] Perrin, J. and Broekhuizen, T., Appl. Phys. Lett. 50, 433 (1987).Google Scholar
[17] Perrin, J., Takeda, Y., Hirano, N., Takeuchi, Y., and Matsuda, A., Surf. Sci. 210, 114 (1989).Google Scholar
[18] Doughty, D.A., Doyle, J.R., Lin, G.H., and Gallagher, A., J. Appl. Phys. 67, 6220 (1990).Google Scholar
[19] Itabashi, N., Nishikawa, N., Magane, M., Naito, S., Goto, T., Matsuda, A., Yamada, C., and Hirota, E., Jpn. J. Appl. Phys. 29, L505 (1990).Google Scholar
[20] Shiratani, M., Kawasaki, H., Fukuzawa, T., Watanabe, Y., Yamamoto, Y., Suganuma, S., Hori, M., and Goto, T., J. Phys. D 31, 776 (1998).Google Scholar
[21] Nurrudin, A., Doyle, J.R., and Abelson, J.R., J. Appl. Phys. 76, 3123 (1994).Google Scholar
[22] Jasinski, J.M., J. Phys. Chem. 97, 5037 (1993).Google Scholar
[23] Perrin, J., Shiratani, M., Kae-Nune, P., Videlot, H., Jolly, J. and Guillon, J., J. Vac. Sci. Technol. A 16, 278 (1998).Google Scholar
[24] Shiratani, M., Kawasaki, H., Fukuzawa, T., Watanabe, Y., Yamamoto, Y., Suganuma, S., Hori, M., andT. Goto, J. Phys. D 31, 776 (1998).Google Scholar
[25] Kessels, W.M.M., Marra, D.C., Sanden, M.C.M. van de, Aydil, E.S., J. Vac. Sci. Technol. A. 20, 781 (2002).Google Scholar
[26] Marra, D.C., Kessels, W.M.M., Sanden, M.C.M. van de, Kashefizadeh, K., Aydil, E.S., Surf. Sci. 530, 1 (2003).Google Scholar
[27] Gallagher, A., Mater. Res. Soc. Symp. Proc. 70, 3 (1986).Google Scholar
[28] Keudell, A. Von and Abelson, J.R., Phys. Rev. B 59, 5791 (1999).Google Scholar