Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:38:58.798Z Has data issue: false hasContentIssue false

Application of Thin-Film Micromachining for Large-Area Substrates

Published online by Cambridge University Press:  15 February 2011

M. Boucinha
Affiliation:
Instituto de Engenharia de Sistemas e Computadores (INESC), R. Alves Redol, 9, 1100 Lisboa, Portugal, mjgb@eniac.inesc.pt
V. Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores (INESC), R. Alves Redol, 9, 1100 Lisboa, Portugal, mjgb@eniac.inesc.pt
V. Soares
Affiliation:
Instituto de Engenharia de Sistemas e Computadores (INESC), R. Alves Redol, 9, 1100 Lisboa, Portugal, mjgb@eniac.inesc.pt
J. P. Condee
Affiliation:
Department of Materials Engineering, Instituto Superior Técnico (IST), Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Get access

Abstract

Surface micromachining is used with amorphous silicon, microcrystalline silicon, silicon nitride and aluminum films as structural materials to form bridge and cantilever structures. Low temperature processing (between 110 and 250 °C) allowed fabrication of structures and devices on glass substrates. Two processes involving different materials as the sacrificial layer are presented: silicon nitride and photoresist. The mechanical integrity of the fabricated structures is discussed. As examples of possible device applications of this technology, air-gap thin film transistors and the electrostatic actuation of bridges and cantilevers are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lang, W., Materials Science and Engineering, R17, p. 1 (1996).Google Scholar
2. Kussul, E. M., Rachkovskij, D. A., Baidyk, T. N. and Talayev, S. A., J. Micromech. Microeng. 6, p. 410 (1996).Google Scholar
3. Sniegowsky, J. J., Solid State Technology, Feb. 1996, p.83.Google Scholar
4. Baliga, J., Semiconductor International, March 1999, p. 34.Google Scholar
5. Howe, R.T., Boser, B.E., Pisano, A.P., Sens. Actuators A 56, p.167 (1996).Google Scholar
6. Cleland, A. N. and Roukas, M. L., Appl. Phys. Lett. 69, p. 2653 (1996).Google Scholar
7. Hoffman, J., Wagner, D. and Dribnak, A., Solid State Technology, October 1998, p. 123.Google Scholar
8. Vandelli, N., Wroblewski, D., Velonis, M., and Bifano, T., Journal of Microelectromechanical Systems 7, p. 395 (1998).Google Scholar
9. Sze, S. M., Semiconductor Sensors, John Wiley & Sons, New York, 1994.Google Scholar
10. Kwok, H. L., Electronic Materials, PWS Publishing, Boston, 1997.Google Scholar
11. Howe, R. T., J. Vac. Sci. Technol. B 6, p.1809 (1988).Google Scholar
12. Burns, D. W. and Guckel, H., J. Vac. Sci. Technol. A 8, p. 3606 (1990).Google Scholar
13. Williams, K. R. and Muller, R. S., Journal of Microelectromechanical Systems 5, p. 256 (1996).Google Scholar
14. Howe, R.T., Muller, R.S., J. Electrochem. Soc.: Solid State Science and Technology 103, 1420 (1983).Google Scholar
15. Maboudian, R., Howe, R.T., J. Vac. Sci. Technol. B 15, p. 1 (1997).Google Scholar
16. Street, R. A., Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, 1991.Google Scholar
17. Amorphous and Microcrystalline Semiconductor Devices, edited by Karicki, J., Artech House, Norwood, MA, 1991.Google Scholar
18. Boucinha, M., Chu, V., and Conde, J. P., Appl. Phys. Lett. 73, p. 502 (1998).Google Scholar
19. Marques, F.C., Wickboldt, P., Pang, D., Chen, J.H., and Paul, W., J. Appl. Phys. 84, 3118 (1998).Google Scholar
20. Beer, F. P. and Johnston, E. R. Jr, Mechanics of materials, Mc Graw-Hill, London, 1992.Google Scholar