Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 0.137 Render date: 2021-11-30T02:31:38.584Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Anti-Weak-Localization Study of Rashba Spin-Splitting Energy as a Function of Well Asymmetry in InAlAs/InGaAs/InAlAs Quantum Wells

Published online by Cambridge University Press:  17 March 2011

Takaaki Koga
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, Morinosato-Wakamiya 3-1, Atsugi, Kanagawa, 243-0198, Japan
Junsaku Nitta
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, Morinosato-Wakamiya 3-1, Atsugi, Kanagawa, 243-0198, Japan
Tatsushi Akazaki
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, Morinosato-Wakamiya 3-1, Atsugi, Kanagawa, 243-0198, Japan
Hideaki Takayanagi
Affiliation:
NTT Basic Research Laboratories, NTT Corporation, Morinosato-Wakamiya 3-1, Atsugi, Kanagawa, 243-0198, Japan
Get access

Abstract

We have investigated the values of the Rashba spin-orbit coupling constant α in In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum wells using an anti-weak-localization (AWL) analysis as a function of quantum well asymmetry. We have found that the deduced α values have strong correlations with the structural inversion asymmetry of the pertinent quantum wells as predicted theoretically. This fact suggests that the AWL analysis provides a reliable way to deduce α values experimentally for designing future spintronics devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prinz, G. A., Physics Today 48(4), 58 (1995); G. A. Prinz, Science 282, 1660 (1998).CrossRefGoogle Scholar
2. Datta, S. and Das, B., Appl. Phys. Lett. 56, 665 (1990).CrossRefGoogle Scholar
3. Nitta, J., Meijer, F. E., and Takayanagi, H., Appl. Phys. Lett. 75, 695 (1999).CrossRefGoogle Scholar
4. Qian, T.-Z. and Su, Z.-B., Phys. Rev. Lett. 72, 2311 (1994).CrossRefGoogle Scholar
5. Koga, T., Nitta, J., Takayanagi, H., and Datta, S., Phys. Rev. Lett. in press (2002).Google Scholar
6. Rashba, E. I., Sov. Phys. Solid State 2, 1109 (1960) [Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)]; Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).Google Scholar
7. Nitta, J., Akazaki, T., Takayanagi, H., and Enoki, T., Phys. Rev. Lett. 78, 1335 (1997).CrossRefGoogle Scholar
8. Engels, G., Lange, J., Schäpers, Th., and Lüth, H., Phys. Rev. B 55, R1958 (1997).Google Scholar
9. Schäpers, Th., Engels, G., Lange, J., Klocke, Th., Hollfelder, M., and Lüth, H., J. Appl. Phys. 83, 4324 (1998).CrossRefGoogle Scholar
10. Grundler, D., Phys. Rev. Lett. 84, 6074 (2000).CrossRefGoogle Scholar
11. Chen, G. L., Han, J., Huang, T. T., Datta, S., and Janes, D. B., Phys. Rev. B 47, 4084 (1993).CrossRefGoogle Scholar
12. Ohkawa, F. J. and Uemura, Y., J. Phys. Soc. Jpn. 37, 1325 (1974).CrossRefGoogle Scholar
13. Därr, A., Kotthaus, J. P., and Ando, T., in Proceedings of the 13th International Conference on the Physics of Semiconductors, edited by Fumi, F. G. (North-Holland, Amsterdam, 1976), p. 774.Google Scholar
14. Pfeffer, P. and Zawadzki, W., Phys. Rev. B 59, R5312 (1999).CrossRefGoogle Scholar
15. Rowe, A. C. H., Nehls, J., Stradling, R. A., and Ferguson, R. S., Phys. Rev. B 63, 201307(R) (2001).CrossRefGoogle Scholar
16. Brosig, S., Ensslin, K., Warburton, R. J., Nguyen, C., Brar, B., Thomas, M., and Kroemer, H., Phys. Rev. B 60, 13989 (1999).CrossRefGoogle Scholar
17. Koga, T., Nitta, J., Akazaki, T., and Takayanagi, H., unpublished (2001).Google Scholar
18. Koga, T., Nitta, J., Akazaki, T., and Takayanagi, H., Proc. NGS 10, IPAP Conf. Series 2, 227 (2001).Google Scholar
19. Koga, T., Nitta, J., Akazaki, T., and Takayanagi, H., to be published in the special issue of Physica E for the 10th International Conference on Modulated Semiconductor Structures (MSS10), (2002).Google Scholar
20. Iordanskii, S. V., Lyanda-Geller, Yu. B., and Pikus, G. E., JETP Lett. 60, 206 (1994).Google Scholar
21. Bergmann, G., Physics Reports 107, 1 (1984).CrossRefGoogle Scholar
22. Elliott, R. J., Phys. Rev. 96, 266 (1954).CrossRefGoogle Scholar
23. D'yakanov, M. I. and Perel', V. I., Sov. Phys. JEPT 33, 1053 (1971) [Zh. Eksp. Teor. Fiz 60, 1954 (1971)].Google Scholar
24. Dresselhaus, P. D., Papavassiliou, C. M. A., Wheeler, R. G., and Sacks, R. N., Phys. Rev. Lett. 68, 106 (1992).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Anti-Weak-Localization Study of Rashba Spin-Splitting Energy as a Function of Well Asymmetry in InAlAs/InGaAs/InAlAs Quantum Wells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Anti-Weak-Localization Study of Rashba Spin-Splitting Energy as a Function of Well Asymmetry in InAlAs/InGaAs/InAlAs Quantum Wells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Anti-Weak-Localization Study of Rashba Spin-Splitting Energy as a Function of Well Asymmetry in InAlAs/InGaAs/InAlAs Quantum Wells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *