Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T09:30:24.442Z Has data issue: false hasContentIssue false

Anisotropic Normal State Transport Properties of Oxide Superconductors Predicted from Lapw Band Structures

Published online by Cambridge University Press:  28 February 2011

Philip B. Allen
Affiliation:
Condensed Matter Physics Branch, Naval Research Laboratory, Washington, DC 20375–5000
Warren E. Pickett
Affiliation:
Condensed Matter Physics Branch, Naval Research Laboratory, Washington, DC 20375–5000
Henry Krakauer
Affiliation:
Condensed Matter Physics Branch, Naval Research Laboratory, Washington, DC 20375–5000
Get access

Abstract

The resistivity, Hall, and thermopower tensors are calculated for the normal state of oxide superconductors on the assumption of band quasiparticle behavior. The shape of the resistivity ραβin the metallic a-b plane is consistent with ordinary impurity and electron-phonon scattering, but the magnitude is larger than predicted. The Hall tensor is predicted to be hole-like for orbits in the a-b plane but electron-like for a-c or b-c orbits, while the thermopower is predicted to be electron-like in the a-b plane and hole-like along the c-axis. Single crystal experiments have confirmed some of these predictions for the Hall tensor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shirane, G. et al., Phys. Rev. Lett. 59, 1613 (1987).Google Scholar
[2] Brinkman, W. F. and Rice, T. M., Phys. Rev. B2, 1324 (1970).Google Scholar
[3] Anderson, P. W., Frontiers and Borderlines in Many-Particle Physics (Varenna Summer School, 1987).Google Scholar
[4] Anderson, P. W., Science 235, 1196 (1987).Google Scholar
[5] IDA theory so far does not stabilize anitferromagnetism in La2CuO4 (O. K. Andersen, private commun.) or related compounds (T. C. Leung, X. W. Wang and B. N. Harmon, preprint).Google Scholar
[6] Arko, A. J. et al., Phys. Rev. Lett. 41, 55 (1978).Google Scholar
[7] Fisk, Z. and Webb, G. W., Phys. Rev. Lett. 36, 1084 (1976).Google Scholar
[8] Allen, P. B., in Superconductivity in d- and f-Band Metals, edited by Suhl, H. and Maple, M. B. (Academic, New York, 1980), 291.Google Scholar
[9] Allen, P. B., Phys. Rev. B17, 3725 (1978).Google Scholar
[10] Allen, P. B., Pickett, W. E. and Krakauer, H., Phys. Rev. B36, 3926 (1987); also inGoogle Scholar
Wolf, S. A. and Kresin, V. Z., eds., Novel Superconductivity (Plenum, New York, 1987), 489.Google Scholar
[11] Allen, P. B., Pickett, W. E. and Krakauer, H., submitted to Phys. Rev. B.Google Scholar
[12] Renker, B. et al., Z. Phys. B62, 15 (1987);Google Scholar
Rhyne, J. J. et al., Phys. Rev. B36, 2294 (1987).Google Scholar
[13] Tozer, S. W. et al., Phys. Rev. Lett. 59, 1768 (1987).Google Scholar
[14] Schlesinger, Z., Collins, R. T., Kaiser, D. L. and Holtzberg, F., Phys. Rev. Lett. 59, 1958 (1987).Google Scholar
[15] Kossler, W. J. et al., Phys. Rev. B35, 7133 (1987).Google Scholar
[16] Gurvitch, M. and Fiory, A. T., in Novel Superconductivity, edited by Wolf, S. A. and Kresin, V. Z. (Plenum, New York, 1987), 663; Phys. Rev. Lett. 59, 1337 (1987).Google Scholar
[17] Pickett, W. E., Krakauer, H., Papaconstantopoulos, D. A., and Boyer, L. L., Phys. Rev. B25, 7252 (1987).Google Scholar
[18] Suzuki, M. and Murakami, T., Jpn. J. Appl. Phys. 26, L524 (1987).Google Scholar