Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T10:08:06.375Z Has data issue: false hasContentIssue false

An Experimental Study of the Fluctuations in Granular Drag

Published online by Cambridge University Press:  01 February 2011

István Albert
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
Pál Tegzes
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556 Department of Biological Physics, Eötvös University, Budapest 1117, Hungary
Réka Albert
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
John Sample
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
Albert-László Barabási
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
Tamás Vicsek
Affiliation:
Department of Biological Physics, Eötvös University, Budapest 1117, Hungary
B. Kahng
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556 Dept. of Physics, Konhuk University, Seoul 143–701, Korea
Peter Schiffer
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
Get access

Abstract

We study fluctuations in the drag force resisting the motion of an object being pulled through a dense spherical granular medium. These fluctuations are stick-slip in nature due to the jamming and reorganization of the grains. The fluctuations in the force are periodic at small depths, but they become “stepped” at large depths. We interpret this transition as a consequence of the long-range nature of the force chains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cates, M. E., Wittmer, J. P., Bouchaud, J.-P., and Claudin, P., Phys. Rev. Lett. 81, 1841 (1998) and cond-mat/9901009 (1999);Google Scholar
Cates, M. E. and Wittmer, J. P., Physica A 263, 354 (1999).Google Scholar
2. Liu, A. J. and Nagel, S. R., Nature (London) 396, 21 (1998).Google Scholar
3. Jaeger, H. M., Nagel, S. R., and Behringer, R. P., Rev. Mod. Phys. 68, 1259 (1996);Google Scholar
Kadanoff, L. P., Rev. Mod. Phys. 71, 435 (1999).Google Scholar
4. Liu, C. et al., Science 269, 513 (1995);Google Scholar
Coppersmith, S. N. et al., Phys. Rev. E 53, 4673 (1996);Google Scholar
Mueth, D.M., Jaeger, H. M., and Nagel, S. R., Phy. Rev. E 57, 3164 (1998);Google Scholar
Jia, X., Caroli, C., Velicky, B., Phys Rev. Lett. 82, 1863 (1999);Google Scholar
Nguyen, M. L. and Coppersmith, S. N., Phys. Rev. E 59, 5870 (1999);Google Scholar
Tkachenko, A. V. and Witten, T., Phys. Rev. E 60 687 (1999);Google Scholar
Howell, D., Behringer, R. P., and Veje, C., Phys. Rev. Lett. 82, 5241 (1999);Google Scholar
Vanel, L. et al. Phys. Rev. E 60, 5040 (1999) and Phys. Rev. Lett 84, 1439 (2000).Google Scholar
5. Claudin, P. and Bouchaud, J.-P., Phys. Rev. Lett. 78, 231 (1997) andGoogle Scholar
Scott, J. E., Kenkre, V. M., and Hurd, A. J., Phys. Rev. E 57, 5850 (1998).Google Scholar
6. Albert, R., Pfeifer, M. A., Barabasi, A.-L., and Schiffer, P., Phys. Rev. Lett. 82, 205 (1999).Google Scholar
7. Albert, I. et al., Phys. Rev. Lett. 84, 5122 (2000) and in preparation.Google Scholar
8. The apparatus was a modified version of that described in reference 6, to which we added the spring on the force cell and improved the bearings.Google Scholar
9. Unless otherwise noted, data are shown for dg = 0.9 mm, k = 25 N/cm and v = 0.2 mm/s.Google Scholar
10. Similar scaling has been reported for fluctuations in the normal force from sheared granular materials in an annular Couette geometry.Google Scholar
Miller, B., O'Hern, C., and Behringer, R. P., Phys. Rev. Lett 77, 3110 (1996).Google Scholar
11. Demirel, A. L. and Granick, S., Phys. Rev. Lett. 77, 4330 (1996);Google Scholar
Feder, H. J. S. and Feder, J., Phys. Rev. Lett. 66, 2669 (1991);Google Scholar
Kolb, E., Mazozi, T., Clement, E., and Duran, J., Eur. Phys. J. B. 8, 483 (1999).Google Scholar
12. Nasuno, S., Kudrolli, A., and Gollub, J. P., Phys. Rev. Lett. 79, 949 (1997);Google Scholar
Nasuno, S., Kudrolli, A., Bak, A., and Gollub, J. P., Phys. Rev. E 58, 2161 (1998);Google Scholar
Geminard, J.-C., Losert, W., and Gollub, J. P., Phys Rev. E 59, 5881 (1999).Google Scholar
13. See, for example, Brown, R. L. and Richards, J. C., Principles of Powder Mechanics (Pergamon Press, Oxford, 1970).Google Scholar