Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T19:27:46.988Z Has data issue: false hasContentIssue false

An Examination of the Deformation Process in Equal-Channel Angular Pressing

Published online by Cambridge University Press:  10 February 2011

Patrick B. Berbon
Affiliation:
Structural Metals Division, Rockwell Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360, U.S.A.pbberbon@rsc.rockwell.com
Minoru Furukawa
Affiliation:
Department of Technology, Fukuoka University of Education, Munakata, Fukuoka 811-4192, Japan
Zenji Horita
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 811-8581, Japan
Minoru Nemoto
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 811-8581, Japan
Terence G. Langdon
Affiliation:
Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453, U.S.A.
Get access

Abstract

In the past decade, there has been an important emphasis in materials science on the production and use of ultrafine-grained materials. These materials offer wide-ranging advantages such as an improvement in strength at low temperatures and enhanced superplastic behavior at high temperatures. New techniques to process these materials have been developed. Good properties have been achieved by powder metallurgy and by techniques of bulk processing. Equal-channel angular (ECA) pressing is a bulkprocessing technique which has led to some remarkable achievements in the production of sub-microcrystalline materials with excellent superplastic properties at low temperatures and high strain rates. When considering the currently available physical and mechanical properties of these materials, it appears that some aspects cannot be explained solely by the very small grain size. In fact, the specific mode of deformation occurring in ECA pressing appears to have an influence on the final properties. This paper reviews the details of this metal working technique and then provides an explanation for the observed microstructures, their thermal stability and their remarkable superplastic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z. and Langdon, T.G., Phil. Mag. Lett. 78, 313 (1998).10.1080/095008398177896Google Scholar
2. Berbon, P.B., Tsenev, N.K., Valiev, R.Z., Furukawa, M., Horita, Z., Nemoto, M. and Langdon, T.G., Metall. Mater. Trans. 29A, 2237 (1998).10.1007/s11661-998-0101-6Google Scholar
3. Berbon, P.B., Komura, S., Utsunomiya, A., Horita, Z., Furukawa, M., Nemoto, M. and Langdon, T.G., Mater. Trans. JIM 40, 772 (1999).10.2320/matertrans1989.40.772Google Scholar
4. Segal, V.M., Mater. Sci. Eng. A197, 157 (1995).10.1016/0921-5093(95)09705-8Google Scholar
5. Valiev, R.Z., Krasilnikov, N.A. and Tsenev, N.K., Mater. Sci. Eng. A137, 35 (1991).10.1016/0921-5093(91)90316-FGoogle Scholar
6. Nazarov, A.A., Romanov, A.E. and Valiev, R.Z., Acta Metall. Mater. 41, 1033 (1993).10.1016/0956-7151(93)90152-IGoogle Scholar
7. Nazarov, A.A., Romanov, A.E. and Valiev, R.Z., Nanostruct. Mater. 4, 93 (1994).10.1016/0965-9773(94)90131-7Google Scholar
8. Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M. and Langdon, T.G., Scripta Mater. 35, 43 (1996).10.1016/1359-6462(96)00107-8Google Scholar
9. Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valley, R.Z. and Langdon, T.G. in Modeling the MechanicalResponse of Structural Materials, edited by Taleff, E.M. and Mahidhara, R.K. (The Minerals, Metals and Materials Society, Warrendale, PA, 1997), p. 173.Google Scholar
10. Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Acta Mater. 46, 3317 (1998).10.1016/S1359-6454(97)00494-1Google Scholar
11. Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Mater. Sci. Eng. A257, 328 (1998).10.1016/S0921-5093(98)00750-3Google Scholar
12. Lee, S., Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z. and Langdon, T.G., Mater. Sci. Eng. A272, 63 (1999).10.1016/S0921-5093(99)00470-0Google Scholar
13. Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M. and Langdon, T.G., Metall. Mater. Trans. 30A, 1989 (1999).10.1007/s11661-999-0009-9Google Scholar
14. Harris, C., Roberts, S.M., Prangnell, P.B. and Humphreys, F.J. in The Third International Conference on Recrystallization and Related Phenomena, edited by McNelley, T.R. (Monterey Institute of Advanced Studies, Monterey, CA, 1997), p. 587.Google Scholar
15. Hansen, N. and Hughes, D.A., Physica Status Solidi A 149, 155 (1995).10.1002/pssa.2211490111Google Scholar
16. Ferrasse, S., Segal, V.M., Hartwig, K.T. and Goforth, R.E., J. Mater. Res. 12, 1253 (1997).10.1557/JMR.1997.0173Google Scholar
17. Hales, S.J. and McNelley, T.R. in Superplasticity in Aerospace, edited by Heikkenen, H.C. and McNelley, T.R. (TMS, Warrendale, PA, 1988), p. 61.Google Scholar
18. Hansen, N., Trans. AIME 245, 1305 (1969).Google Scholar
19. Schuh, F. and Heimendahl, M. von, Z. Metallk. 65, 346 (1974).Google Scholar