Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T12:19:19.309Z Has data issue: false hasContentIssue false

Amorphous Hydrogenated Silicon Carbide Prepared from DC-Biased RF-Plasma-Enhanced Chemical Vapor Deposition

Published online by Cambridge University Press:  21 February 2011

Hsueh Yi Lu
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208
Mark A. Petrich
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

We present evidence that an independently applied dc bias voltage has a significant effect on the plasma deposition of amorphous hydrogenated silicon carbide. Deposition rates increase with either positive or negative dc voltages applied to the powered rf electrode. The microstructure of the films (as determined by infrared absorption) can be reduced by increasing the plasma potential (positive dc bias voltages). Negative dc biases, or excessively high positive biases, result in increased amounts of film microstructure. Film carbon content is increased when positive biases are applied, but the optical band gaps decrease suggesting increased amounts of graphitic bonding configurations. Negative biases do not change the carbon content of the films, but do increase both deposition rate and microstructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tawada, Y., Kondo, M., Okamoto, H., and Hamakawa, Y., Jpn. J. Appl. Phys. 21, 297 (1982).Google Scholar
2. Schade, H., Smith, Z. E., and Catalano, A., Solar Energy Materials, 10, 317 (1984).Google Scholar
3. Kruangam, D., Endo, T., Deguchi, M., Guang-Pu, W., and Okamoto, H., Optoelectronics-Devices and Technologies, 1, 67 (1986).Google Scholar
4. Anderson, D. A. and Spear, W. E., Phil. Mag. 35, 1 (1977).Google Scholar
5. Morimoto, A., Miura, T., Kumeda, M., and Shimizu, T., J. Appl. Phys. 53, 7299 (1982).Google Scholar
6. Mahan, A.H., von Roedern, B., Williamson, D.L., and Madan, A., J. Appl. Phys. 57, 2717 (1985).Google Scholar
7. Boulitrop, F., Bullot, J., Gauthier, M., Scimidt, M. P., and Catherine, Y., Solid State Commun. 54, 107 (1985).Google Scholar
8. Fiorini, P., Evangelisti, F., and Frova, A., Mat. Res. Soc. Symp. Proc. 49, 195 (1985).Google Scholar
9. Schmidt, M. P., Bullot, J., Gauthier, M., Cordier, P., Solomon, I., and Tran-Quoc, H., Phil. Magn. B6, 581 (1985).Google Scholar
10. Bullot, J. and Schmidt, M. P., Phys. Stat. Sol. (b), 143, 345 (1987).Google Scholar
11. Siebert, W., Carius, R., Fuhs, W., and Jahn, K., Phys. Stat. Sol. (b), 140, 311 (1987).Google Scholar
12. Shimizu, T., Kumeda, M., and Kiriyama, Y., Solid State Comm. 37, 699 (1981).Google Scholar
13. Petrich, M. A., Gleason, K. K., and Reimer, J. A., Phys. Rev. B36, 9722 (1987).Google Scholar
14. Catherine, Y., Turban, G., and Grolleau, B., Thin Solid Films, 76, 23 (1981).Google Scholar
15. Bauer, G. H., Mohring, H.-D., Bilger, G., and Eicke, A., J. Non-Crys. Solids, 77&78, 873 (1985).Google Scholar
16. Tanaka, K. and Matsuda, A., Mat. Sci. Rep. 2, 139 (1987).CrossRefGoogle Scholar
17. Perrin, J., Solomon, I., Bourdon, B., Fontenille, J., and Ligeon, E., Thin Solid Films, 62, 327 (1979).Google Scholar
18. Perrin, J., Takeda, Y., Hirano, N., Matsuura, H., and Mastuda, A., Jpn. J. Appl. Phys. 28, 1 (1989).Google Scholar
19. Rahman, M. M., Yang, C. Y., Suggiarto, D., Byrne, A. S., Ju, M., Tran, K., Lui, K. H., Asano, T., and Stickle, W. F., J. Appl. Phys, 67, 7065 (1990).Google Scholar
20. Cobum, J. W. and Kay, E., J. Appl. Phys. 43, 4965 (1972).Google Scholar
21. Bruce, R. H. and Reinberg, A. R., J. Electrochem. Soc. 129, 393 (1982).CrossRefGoogle Scholar
22. Kohler, K., Coburn, J. W., Home, D. E., and Kay, E., J. Appl. Phys. 57, 59 (1985).Google Scholar
23. Greene, W. M., Hess, D. W., and Oldham, W. G., J. Vac. Sci. Technol. B6, 1570 (1988).Google Scholar
24. Gerstein, B. C. and Dybowski, C. R., Transient Techniques inNMR of Solids, (Academic Press, Orlando, 1985) p. 94.Google Scholar
25. Reimer, J. A. and Petrich, M. A., in Advances in amorphous semiconductors, edited by Fritzsche, H. (World Scientific, Singapore, 1989) Vol A, p. 3.Google Scholar
26. Wertz, J. E. and Bolton, J. R., Electron Spin Resonance: Elementary Theory and Pratical Applications, (Chapman and Hall, New York, 1986) p. 462.Google Scholar
27. Turban, G., Catherine, Y., and Grolleau, B., Thin Solid Films, 60, 147 (1979).Google Scholar
28. Ceyer, S. T., Science, July 13, 133 (1990).Google Scholar
29. Zanzucchi, P. J., in Semiconductors and Semimetals, edited by Pankove, J. I. (Academic, Orlando, 1984) Vol. 21B, p. 113.Google Scholar
30. Mahan, A.H., Raboisson, P., and Tsu, R., Appl. Phys. Lett. 50, 335 (1987).Google Scholar