Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T01:48:18.096Z Has data issue: false hasContentIssue false

Amorphization of Ceramic Materials by Ion-Beam-Irradiation: Parallels to Glass Formation

Published online by Cambridge University Press:  15 February 2011

L. M. Wang
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131
S. X. Wang
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131
W. L. Gong
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131
R. C. Ewing
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

Ion-beam-induced amorphization of a wide variety of ceramic materials has been investigated using in situ TEM at the HVEM-Tandem Facility at Argonne National Laboratory with 1.5 MeV Kr+ or Xe+ ions at temperatures between 20 to 1000 K. The critical amorphization temperatures and the activation energies associated with the expitaxial recovery of displacement cascades during irradiation have been determined from the temperature dependence of the critical amorphization dose. The results for phases in the A12 O3-MgO-SiO2 system suggested a parallel in the kinetics between ion-beam-induced amorphization and glass formation. Based on a cascade quenching model, a semiempirical parameter, S, which can easily be calculated from both structural and chemical parameters of a material, has been developed to predict the susceptibility of ceramics to amorphization. The critical amorphization temperature, above which irradiationinduced amorphization cannot be completed, is closely related to the glass transition temperature. The ratio between glass transition and melting temperatures can also be used to predict the susceptibility of a ceramic material to amorphization, equivalent to the Debye temperature criterion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matzke, Hj., Radiat. Eff. 64, 3 (1982).Google Scholar
2. Hobbs, L.W., Clinard, F.W., Zinkle, S.J. and Ewing, Rodney C., J. Nucl. Mater. 216, 291 (1994).Google Scholar
3. Ewing, R.C., Chakoumakos, B.C., Lumpkin, G.R. and Murakami, T., MRS Bull. 12(4), 58 (1987).Google Scholar
4. Ewing, R.C., Nucl. Instru. Meth. B 91, 22 (1994).Google Scholar
5. Wang, L.M. and Ewing, R.C., MRS Bull. 17(5), 38 (1992).Google Scholar
6. Ewing, R.C., Wang, L.M., and Weber, W.J., Mat. Res. Soc. Symp. Proc. 373, 347 (1995).Google Scholar
7. Wang, L.M., Eby, R.K., Janeczek, J. and Ewing, R.C., Nucl. Instr. Meth. B 59/60, 395 (1991).Google Scholar
8. Eby, R.K., Ewing, R.C. and Birtcher, R.C., J. Mater. Res. 7, 3080 (1992).Google Scholar
9. Wang, L.M. and Ewing, R.C., Mat. Res. Soc. Symp. Proc. 235, 333 (1992).Google Scholar
10. Wang, L.M., Gong, W.L. and Ewing, R.C., Mat. Res. Soc. Symp. Proc. 321, 405 (1994).Google Scholar
11. Wang, L.M., Gong, W.L., Bordes, N. and Ewing, R.C. in Ion Beam Modification of Materials, edited by Williams, J.S., Elliman, R.G. and Ridgway, M.C. (Elservier Sciences B.V. 1996), p. 1073.Google Scholar
12. Wang, L.M., Cameron, M. and Weber, J.W. in Hydroxyapatite and Related Materials, edited by Brown, P.W. and Constantz, B. (CRC Press Inc. 1994), p. 243.Google Scholar
13. Weber, W. J., Ewing, R. C. and Wang, L. M., J. Mater. Res. 9, 688 (1994).Google Scholar
14. Meldrum, A., Wang, L.M. and Ewing, R.C., Nucl. Instru. Meth. B 116, 220 (1996).Google Scholar
15. Wang, L.M., Wu, A.Y. and Ewing, R.C., Mat. Res. Soc. Symp. Proc. 268, 343 (1992).Google Scholar
16. Newcomer, P.P., Barbour, J.C., Wang, L.M., Venturini, E.L., Kwak, J.F., Ewing, R.C., Miller, M.L. and Morosin, B., Physica C 267, 243 (1996).Google Scholar
17. Allen, C. W., Funk, L. L., Ryan, E. A. and Ockers, S. T., Nucl. Instr. Meth. B40/41 553 (1989).Google Scholar
18. Hobbs, L. W., Nucl. Instru. Meth. B 91, 30 (1994).Google Scholar
19. Naquib, N.M. and Kelly, R., Radiat. Eff. 25, 1 (1975).Google Scholar
20. Gong, W.L., Wang, L.M., Ewing, R.C. and Zhang, J., Physical Review B 54, 3800 (1996).Google Scholar
21. Wang, L.M., Gong, W.L., Ewing, R.C. and Weber, W.J., Mat. Res. Soc. Symp. Proc. 398, 233 (1996).Google Scholar
22. Wang, L.M., Birtcher, R.C. and Ewing, R.C., Nucl. Instru. Meth. B 80/81, 1109 (1993).Google Scholar
23. Wang, L.M., Miller, M.L. and Ewing, R.C., Ultramicroscopy 51, 339 (1993).Google Scholar
24. Wang, L.M. and Weber, W.J., Mat. Res. Soc. Symp. Proc. 373, 389 (1995).Google Scholar
25. Diaz de la Rubia, T., Averback, R. S., Hsieh, H., and Benedek, R., J. Mater. Res. 4, 579 (1989).Google Scholar
26. Doremus, R. H., Glass Science, 2nd Edition (John Wiley & Sons Inc., New York, 1994).Google Scholar
27. Bansal, N. P. and Doremus, R. H., Handbook of Glass Properties (Academic Press, New York, 1986).Google Scholar
28. Sales, B.C., Ramey, J.O., Boatner, L.A. and McCallum, J.C., Phys. Rev. Lett. 62 (1989) 1138.Google Scholar
29. Sales, B.C., Ramey, J.O., McCallum, J.C. and Boatner, L.A., J. Non-Cryst. Solids 126, 179 (1990).Google Scholar
30. Qin, L.C. and Hobbs, L.W., Mat. Res. Soc. Symp. Proc. 373, 341 (1995).Google Scholar
31. Cooper, A. R., Physics Chem. of Glasses 19, 60 (1978).Google Scholar
32. Gupta, P. K., J. Am. Ceram. Soc. 76, 1088 (1993).Google Scholar
33. Hobbs, L. W., J. Non-Cryst. Solids 182, 27 (1995).Google Scholar
34. Hobbs, L. W., J. Non-Cryst. Solids 193, 79 (1995).Google Scholar
35. Wang, S. X., Wang, L. M., Ewing, R. C. and Doremus, R. H., submitted to J. Non-Cryst. Solids.Google Scholar
36. Wang, S. X., Wang, L. M. and Ewing, R. C., these proceedings.Google Scholar
37. Wolf, D., Okamoto, P.R., Yip, S., Lutsko, J.F., and Kluge, M., J. Mater. Res. 5, 286 (1990).Google Scholar
38. Lam, N.Q., Okamoto, P.R., Devanathan, R., and Meshii, M, J. Alloys Comp. 194, 447 (1993).Google Scholar
39. Fetch, H.J., Mater. Trans. JIM 36, 777 (1995).Google Scholar
40. Lam, N.Q. and Okamoto, P.R., MRS Bull. 18, 41 (1994).Google Scholar
41. Lam, N.Q. and Okamoto, P.R., Surf. Coatings Tech. 65, 7 (1994).Google Scholar
42. Xu, G., Meshii, M., Okamoto, P.R., and Rehn, L.E., J. Alloys Comp. 194, 401 (1993).Google Scholar
43. Garoche, P. and Bigot, J., Phys. Rev. B28, 6886 (1983).Google Scholar
44. Weber, W.J. and Wang, L.M., Nucl. Instru. Meth. B 91, 63 (1994).Google Scholar
45. Richet, P. and Bottinga, Y., Earth Planet. Sci. Lett. 67, 415 (1984).Google Scholar
46. Richet, P. and Bottinga, Y., Rev. Geophys. 24, 1 (1986).Google Scholar
47. Bottonga, Y., Richet, P., and Sipp, A., Amer. Miner. 80, 305 (1995).Google Scholar
48. Urbain, G., Bottinga, Y., and Richet, P., Geochim. Cosmochim. Acta 46, 1061 (1982).Google Scholar
49. Bansal, N.P. and Doremus, R.H., Handbook of Glass Properties (Academic Press, INC, New York, 1986).Google Scholar
50. Gong, W.L., Wang, L.M., Ewing, R.C., Fei, Y., Phys. Rev. B 53, 2155 (1996).Google Scholar