Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-19T07:25:58.501Z Has data issue: false hasContentIssue false

Advanced Knowledge for Impurity Motion of Oxygen in Silicon and its Application to Defect-State Analysis

Published online by Cambridge University Press:  10 February 2011

H. Yamada-Kaneta*
Affiliation:
Process Development Div., Fujitsu Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, JAPAN, KXC00236@niftyserve.or.jp
Get access

Abstract

We review our two models for the impurity excitation of the oxygen in silicon. The first model aims to explain the energies and intensities of the infrared absorption lines. The coupled excitation is formulated for the first time under the D3d symmetry. Taking into account the lowenergy excitation of the oxygen, the A2u local mode, and the anharmonic coupling between them, we quantitatively describe the absorption lines in the 30-, 1100-, and 1200-cm−1 bands, including those of the 18O isotope. We next take into account the A1g local mode, the Eu resonant mode, and the couplings between the excitation elements. This enables us to qualitatively explain the origin and characteristic aspects of other absorptions, e.g., the 500- and 1700-cm−1 bands. The second model is a simplification of the first one with the coupling to the band (extended) phonons included. The model describes the strong temperature dependence of the line widths observed for both of the phonon-resonant 30-cm−1 band and the phonon-off-resonant 1100-cm−1 band. The life-time limiting process causing the finite line-widths is shown to be the one-phonon transitions in the energy-level ladders of the low-energy excitation each belonging to the ground and the first excited states of the A2u local mode. The vibrational excitations of the similar impurity systems in Si, Ge, Ge xSi1−x crystals are analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Corbett, J. W., McDonald, R. S., and Watkins, G. D., J. Phys. Chem. Solids 25, 873 (1964).Google Scholar
2. Pajot, B., in Oxygen in Silicon, Edited by Shimura, F., Semiconductors and Semimetals Vol. 42 (Academic, Boston, 1994), pp. 191250.Google Scholar
3. Wagner, P., Appl. Phys. A 53, 20 (1991).Google Scholar
4. Hrostowski, H. J. and Kaiser, R. H., Phys. Rev. 107, 966 (1957).Google Scholar
5. Pajot, B., J. Phys. Chem. Solids 28,73 (1967).Google Scholar
6. Bosomworth, D. R., Hayes, W., Spray, A. R. L., and Watkins, G. D., Proc. R. Soc. London A 317, 133 (1970).Google Scholar
7. Stavola, M., Appl. Phys. Lett. 44, 514 (1984).Google Scholar
8. Pajot, B., Stein, H. J., Cales, B., and Naud, C., J. Electrochem. Soc. 132,3034 (1985).Google Scholar
9. Krishnan, A. K. and Hill, S. L., in Proceedings of the 1981 International Conference on Fourier Transform Infrared Spectroscopy, edeited by Sakai, H. (The International Society for Optical Engineering, Beilingham, WA, 1981), p. 27.Google Scholar
10. Pajot, B. and Cales, B., in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J. C. Jr., Pearton, S. J., Corbett, J. W., and Pennycook, S. J., (Mater. Res. Soc. Proc. 59, Pittsburgh, PA, 1986), p. 39.Google Scholar
11. Oates, A. S. and Stavola, M., J. Appl. Phys. 61, 3114 (1987).Google Scholar
12. Yamada-Kaneta, H., Kaneta, C., and Ogawa, T., Phys. Rev. B 47, 9338 (1993).Google Scholar
13. Pajot, B., Artacho, E., Ammerlaan, C. A. J., and Speath, J-M, J. Phys. Condens. Matter 7,7077 (1995).Google Scholar
14. Markevich, V. P. (private communication).Google Scholar
15. Yamada-Kaneta, H., in Proceedings of the Kazusa Academia Park Forum on the Science and Technology of Silicon mMaterials, edited by Organizing Commitee (Kisarazu, Japan, 1997), p. 416.Google Scholar
16. Yamada-Kaneta, H., Kaneta, C., and Ogawa, T.: Phys. Rev. B 42, 9650 (1990).Google Scholar
17. Yamada-Kaneta, H., Matter. Sci. Forum 258–263,355, (1997).Google Scholar
18. Martinez, E., Plans, J., and Yndurain, F., Phys. Rev. B 36, 9043 (1987).Google Scholar
19. Kaneta, C., Yamada-Kaneta, H., and Osawa, A., Mater. Sci. Forum 38–41, 323 (1989).Google Scholar
20. Saito, M. and Oshiyama, A., Phys. Rev. B 33,10711 (1988).Google Scholar
21. Jones, R., Umerski, A., and Oberg, S., Phys. Rev. B 45, 11321 (1992).Google Scholar
22. Artacho, E., Lizon-Nordstrom, A., and Yndurain, F., Phys. Rev. B 51,7862 (1995).Google Scholar
23. Lizon-Nordstrom, A. and Yndurain, F., Solid State Commun. 89,819 (1994).Google Scholar
24. Hrostowski, H. J. and Alder, B. J., J. Chem. Phys. 33, 980 (1960).Google Scholar
25. McCluskey, M. D. and Hailer, E. E., Phys. Rev. B 56,9520 (1997).Google Scholar
26. Weisskoph, V. and Wigner, E., Z. Phys. 3, 1055 (1955).Google Scholar
27. Wauters, D. and Clauws, P., Matter. Sci. Forum 258–263, 103 (1997).Google Scholar
28. Bean, A. R. and Newman, R. C., J. Phys. Chem. Solids 32, 1211 (1971).Google Scholar
29. Shirakawa, Y., Yamada-Kaneta, H., and Mori, H., J. Appl. Phys. 77, 41 (1995);Google Scholar
Shirakawa, Y. and Yamada-Kaneta, H., J. Appl. Phys. 80, 4199 (1966).Google Scholar
30. Kaneta, C., Sasaki, T., and Katayama-Yoshida, H., Phys. Rev. B 46, 13179 (1992).Google Scholar
31. Yamada-Kaneta, H., Shirakawa, Y., and Kaneta, C., in Early Stage of Oxygen Precipitation in Silicon, edited by Jones, R. (Kluwer Academic, Netherlands, 1996) pp. 389396.Google Scholar
32. Lassmann, K., Mater, Sci. Forum 196–201, 1563 (1995).Google Scholar
33. Gienger, M., Glaser, M., and Lassmann, K., Solid State Commun. 86,285 (1993).Google Scholar
34. Aichele, N., Gommel, U., Lafβmann, K., Maier, F., Zeller, F., Haller, E. E., Itoh, M. K., Khirunenko, L. i., Shakhovtsov, V., Pajot, B., Fogarassy, E., and Müssig, H., Matter. Sci. Forum 258–263,47 (1997).Google Scholar
35. Khirunenko, L. I., Shakhovtsov, V. I., Shinkarenko, V. K., and Vorobkalo, F. M., Soy. Phys. Semicond. 24,663 (1990);Google Scholar
Mayur, A. J., Dean, M. Sciacca, Udo, M. K., Ramdas, A. K., Itoh, K. Wolk, . J., and Haller, E. E., Phys. Rev. B 49, 16293 (1994).Google Scholar
36. Stavola, M., Pearton, S. J., Lopata, J., and Dautremont-Smith, W. C., Phys. Rev. B 37,8313 (1988).Google Scholar
37. Schneider, J., Dischler, B., Seelewind, H., Mooney, P. M., Logowski, J., Matsui, M., Beard, D. R., and Newman, R. C., Appl. Phys. Lett. 54, 1442 (1989).Google Scholar