Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-30T10:59:23.749Z Has data issue: false hasContentIssue false

Ablation, Melting, and Smoothing of Polycrystalline Alumina by Pulsed Excimer Laser Radiation

Published online by Cambridge University Press:  01 January 1992

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831–6056
M. Desilva
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996–2200
M. J. Godbole
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996–2200
A. J. Pedraza
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996–2200
D. B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831–6056
Get access

Abstract

The effects of pulsed XeCl (308 nm) laser radiation on polycrystalline Al2O3 (alumina, 99.6% pure) and single-crystal Al2O3 (sapphire) are studied as a function of laser fluence. No laser etching ofeither material is detected below a threshold fluence value, which is much lower for alumina than for sapphire. Above this threshold, laser etching of both materials is observed following a number of incubation (induction) pulses. This number is much larger for sapphire than for alumina but decreases with increasing fluence for both materials. Laser etching rates for the two materials are similar at high fluences and after the incubation period. Scanning electron microscope images show that alumina melts and flows under repeated irradiation at fluences ≥0.7 J/cm2. Atomic force microscopy and surface profilometry reveal significant smoothing of the as-received polycrystalline alumina surface after repeated irradiations at moderate fluences (∼1−3 J/cm2). Ion probe measurements for alumina in vacuum confirm the incubation behavior, and reveal that at fixed fluence the (positive) charge collected per pulse saturates after a sufficient number of pulses, as does the etch-plume velocity. The results are interpreted in terms of laser-generation of a sufficient concentration of absorption centers before efficient ablation/etching of these wide bandgap materials can occur.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rothenburg, J.E. and Kelly, R., Nuc. Instr.andMethods in Physics Res. B1, 291 (1984).Google Scholar
2. Kelly, R., Cuomo, J. J., Leary, P. A., Rothenburg, J. E., Braren, B. E., and Aliotta, C. F., Nuc. Instr.and Methods in Physics Res. B9, 329 (1985).Google Scholar
3. Dreyfus, R. W., Kelly, R., and Walkup, R. E., Appl. Phys. Lett. 49, 1478 (1986).Google Scholar
4. Dreyfus, R. W., Walkup, R. E., and Kelly, R., Radiation Effects 99, 199 (1986).Google Scholar
5. Dreyfus, R. W., McDonald, F. A., and von Gutfeld, R. J., J. Vac. Sci. Technol. B5, 1521 (1987).Google Scholar
6. Schildbach, M.A. and Hamza, A. V., Phys. Rev. B 45, 6197 (1992).Google Scholar
7. Eschbach, P. A., Dickinson, J. T., Langford, S. C., and Pederson, L. R., J. Vac. Sci. and Technol. A 7, 2943 (1989).Google Scholar
8. Langford, S. C., Jensen, L. C., Dickinson, J. T., and Pederson, L. R., J. Appl. Phys. 68, 4253 (1990).Google Scholar
9. Lazare, S. and Grainer, V., J. Appl. Phys. 63, 2110 (1988).Google Scholar
10. Tam, A. C., Brand, J. L., Cheng, D. C., and Zapka, W., Appl. Phys. Lett. 55, 2045 (1989).Google Scholar
11. Srinivasan, R., Braren, B., and Casey, K. G., J. Appl. Phys. 68, 1842 (1990).Google Scholar
12. Preuss, S., Langowski, H.-C., Damm, T., and Stuke, M., Appl. Phys. A 54, 360 (1992).Google Scholar
13. Dickinson, J. T., Langford, S. C., Jensen, L. C., Eschbach, P. A., Pederson, L. R., and Baer, D. R., J. Appl. Phys. 68, 1831 (1990).Google Scholar
14. Dickinson, J. T., Langford, S. C., and Jensen, L. C., in Laser Ablation: Mechanisms and Applications, ed. by Miller, J. C. and Haglund, R. F. Jr. (Springer-Verlag, Berlin, 1991), p. 301.Google Scholar
15. Dickinson, J. T., Langford, S. C., and Jensen, L. C., in SPIE Vol. 1598: Lasers in Microelectronic Manufacturing, (SPIE-The Inter. Soc, for Optical Engin., Bellingham, WA, 1991), p. 72.Google Scholar
16. Kelly, R. and Dreyfus, R. W., Nuc. Instr. and Methods in Physics Res. B32, 341 (1988).Google Scholar
17. Kelly, R., J. Chem. Phys. 92, 5047 (1990).Google Scholar