Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T11:47:20.698Z Has data issue: false hasContentIssue false

(001)-Textured Laser-Crystallized Silicon thin Films on Glass Substrates

Published online by Cambridge University Press:  17 March 2011

M. Nerding
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften, Lehrstuhl für Mikrocharakterisierung, Cauerstr. 6, D-91058 Erlangen
S. Christiansen
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften, Lehrstuhl für Mikrocharakterisierung, Cauerstr. 6, D-91058 Erlangen
G. Esser
Affiliation:
Universität Erlangen-Nürnberg, Lehrstuhl für Fertigungstechnologie, Egerlandstr. 11, D-91058 Erlangen
U. Urmoneit
Affiliation:
Universität Erlangen-Nürnberg, Lehrstuhl für Fertigungstechnologie, Egerlandstr. 11, D-91058 Erlangen
A. Otto
Affiliation:
Universität Erlangen-Nürnberg, Lehrstuhl für Fertigungstechnologie, Egerlandstr. 11, D-91058 Erlangen
H.P. Strunk
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften, Lehrstuhl für Mikrocharakterisierung, Cauerstr. 6, D-91058 Erlangen
Get access

Abstract

We investigate the microstructure of polycrystalline silicon films (grain size, texture and grain boundary population) on glass substrates. These films are produced from amorphous silicon precursor layers by scanning the raw beam of a continuous wave Ar+- ion laser operated at a wavelength of 514 nm over the amorphous silicon thereby crystallizing it. The materials applicability for devices in large area electronics strongly depends on the orientation of the surface normal, the average grain size and the defect density and population. Transmission electron microscopy together with electron back-scattering diffraction analysis of the crystallized layers reveal grain widths of about 10μm and grain lengths of several 10 μm. Under certain procesing conditions a preferred (001)-surface normal orientation (texture) forms. The grain boundary population is dominated in the textured films by coincidence boundaries, essentially twin boundaries of first and second order as well as Σ=5 boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.. Sameshima, T., Hara, M., Usui, S., Jpn. J. Appl. Phys., Part 1, 28, 1789 (1989)Google Scholar
2. Bergmann, R.B., Köhler, J., Dassow, R., Zaczek, C., Werner, J.H., phys. stat. sol. (a) 166, 587 (1993)Google Scholar
3. Im, J.S., Crowder, M.A., Sposili, R.S., Leonard, J.P., Kim, H.J., Yoon, J.H., Gupta, V.V., Jin, H. , Song, Cho, H.S., phys. stat. sol. (a) 166, 603, (1998)Google Scholar
4. Köhler, J.R., Dassow, R., Bergmann, R.B., Krinke, J., Strunk, H.P., Werner, J. H., Thin Solid Films 337, 129 (1999)Google Scholar
5. Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., Christiansen, S., Albrecht, M., Strunk, H.P., J.Appl.Phys. 85, 4010 (1999)Google Scholar
6. Andrä, G., Bergmann, J., Falk, F., Ose, E., Stafast, H., phys. stat. sol. (a) 166, 629, (1998)Google Scholar
7. Christiansen, S., Lengsfeld, P., Krinke, J., Nerding, M., Nickel, N. H. and Strunk, H. P., J. Appl. Phys. 89, No. 9, 1 May 2001 Google Scholar
8. Nerding, M., Christiansen, S., Krinke, J., Dassow, R., Köhler, J.R., Werner, J.H., Strunk, H. P., Thin Solid Films 383, 110 (2001)Google Scholar
9. Loreti, S., Vittori, M., Mariucci, L., Fortunato, G., Solid State Phenomena 67–68, 181 (1999)Google Scholar
10. Platen, J., Selle, B., Sieber, I., Brehme, S., Zeimer, U., Fuhs, W., Thin Solid films 381, 22 (2001)Google Scholar
11. Wagner, T.A., Oberbeck, L., Nerding, M., Strunk, H.P., Bergmann, R.B., Mat. Res. Soc. Symp. Proc. 664, (2001), to be publishedGoogle Scholar
12. Krinke, J., Albrecht, M., Dorsch, W., Voigt, A., Strunk, H.P., 25th IEEE PVSC 473 (1996)Google Scholar
13. Hull, D., Bacon, D.J., Introduction to Dislocations, (Pergamon Press, Oxford, 1994)Google Scholar
14. Bollmann, W., Crystal Defects and Crystalline Interfaces, Springer, Berlin (1970)Google Scholar
15. Kohyama, M. and Yamamoto, R., Phys. Rev. B 49, 17102 (1994)Google Scholar
16. Löhberg, K., Metallkde, Z.., 63, 1(1972)Google Scholar
17. Jackson, K.A., Chalmers, B., Can. J. Phys. 34, 473 (1956)Google Scholar
18. Batstone, J.L., Phil. Mag. A 67, 51 (1993)Google Scholar
19. Voigt, A., Wolf, E., Strunk, H.P., Mat. Sci. & Eng. B 54, 202 (1998)Google Scholar