Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-27T00:47:31.725Z Has data issue: false hasContentIssue false

Ab-Initio Modeling of C-B Interactions In Si

Published online by Cambridge University Press:  21 March 2011

Chun-Li Liu
Affiliation:
Advanced Process Development and External Research Lab., Motorola
Wolfgang Windl
Affiliation:
Advanced Process Development and External Research Lab., Motorola
Len Borucki
Affiliation:
Advanced Process Development and External Research Lab., Motorola
Shifeng Lu
Affiliation:
Process and Materials Characterization Laboratory, Motorola
Xiang-Yang Liu
Affiliation:
Physical Sciences Research Laboratory, Motorola
Get access

Abstract

We present the results of ab-initio calculations for the structure and energetics of small boron-carbon (BCI) as well as carbon-carbon (C2I) clusters in Si, a continuum model for the nucleation, growth, and dissolution of the clusters, and experimental investigation by SIMS. The modeling results suggest that these clusters may play a role in controlling B diffusion in Si and SiGe systems and the experimental results seem to support the modeling findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scholz, R., Gosele, U., Huh, J.-Y., Tan, T. Y., Appl. Phys. Lett. 72 (2), p. 200 (1998).Google Scholar
2. Stolk, P. A., Eaglesham, D. J., Gossmann, H.-J., and Poate, J. M., Appl. Phys. Lett. 66 (11), p. 1370 (1995).Google Scholar
3. Windl, W., Bunea, M. M., Stumpf, R., Dunham, S. T., and Masquelier, M. P., Phys. Rev. Lett. 83, 4345 (1999).Google Scholar
4. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
5. Jonsson, H., Mills, G., Jacobsen, K. W., Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, ed. Berne, B. J., Ciccotti, G., and Coker, D. F., World Scientific, Singapore, 1998.Google Scholar
6. Stumpf, R., Liu, C.-L., and Tracy, C., Appl. Phys. Lett. 75, 1389 (1999).Google Scholar
7. Liu, C.-L., Borucki, L. J., Merchant, T., Stoker, M., and Korkin, A., Appl. Phys. Lett. 76, 885 (2000).Google Scholar
8. Hjalmarson, H. P., Vogl, P., Wolford, D. J., and Dow, J. D., Phys. Rev. Lett. 44, 810 (1980); J. D. Lorentzen, G. H. Loechelt, M. Meléndez-Lira, J. Menéndez, S. Sego, R. J. Culbertson, W. Windl, O. F. Sankey, A. E. Bair, and T. L. Alford, Appl. Phys. Lett. 70, 2353 (1997).Google Scholar
9. Windl, W., Sankey, O. F., and Menéndez, J., Phys. Rev. B 57, 2431 (1998).Google Scholar
10. Capaz, R. B., Pino, A. Dal Jr, and Joannopoulos, J. D., Phys. Rev. B 50, 7439 (1994).Google Scholar
11. Tan, T. Y. and Gösele, U., in Handbook of Semiconductor Technology-Electronic Structure and Properties of Semiconductors, ed. by Jackson, K. A. and Schroeter, W., vol. 1 (Wiley & Sons, New York, 2000), p. 231.Google Scholar
12. Liu, X.-Y., Windl, W., and Masquelier, M., Appl. Phys. Lett. 77, 2018 (2000).Google Scholar
14. Capaz, R. B., Pino, A. Dal Jr, and Joannopulous, J. D., Phys. Reb. B. 58, 9845 (1998).Google Scholar
13. Windl, W., Kress, J. D., Voter, A. F., Menéndez, J., and Sankey, O. F., in Defects and Diffusion in Silicon Processing, ed. by Rubia, T. Diaz de la, Coffa, S., Stolk, P. A., and Rafferty, C. S., Mat. Res. Soc. Proc. 469 (Pittsburgh, PA, 1997), p. 443.Google Scholar
15. Rücker, H., Heinemann, B., Ropke, W., Kurps, R., Kruger, D., Lippert, G., and Osten, H. J., Appl. Phys. Lett. 73, 1682 (1998).Google Scholar
16. Kimerling, L. C., Asom, M. T., and Benton, J. L., Drevinsky, P. J., and Caefer, C. E., Materials Science Forum, 38–41, 141 (1989).Google Scholar
17. Drevinsky, P. J., Caeler, C. E., Tobin, S. P., Mikkelsen, J. C., and Kimerling, L. C., Proc. Mater. Res. Soc. 104, 167 (1988).Google Scholar