Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-27T10:47:03.565Z Has data issue: false hasContentIssue false

Ab INITIO CALCULATION OF THE LixCoO2 PHASE DIAGRAM

Published online by Cambridge University Press:  10 February 2011

Anton Van Der Ven
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139
Mehmet K Aydinol
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139
Gerbrand Ceder
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139
Get access

Abstract

The electrochemical properties of the layered intercalation compound LiCoO2 used as a cathode in Li batteries have been investigated extensively in the past 15 years. Despite this research, little is known about the nature and thermodynamic driving forces for the phase transformations that occur as the Li concentration is varied. In this work, the phase diagram of LixCoO2 is calculated from first principles for x ranging from 0 to 1. Our calculations indicate that there is a tendency for Li ordering at x = 1/2 in agreement with experiment [1]. At low Li concentration, we find that a staged compound is stable in which the Li ions selectively segregate to every other Li plane leaving the remaining Li planes vacant. We find that the two phase region observed at high Li concentration is not due to Li ordering and speculate that it is driven by a metal-insulator transition which occurs at concentrations slightly below x < 1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Reimers, J. N. and Dahn, J. R., J. Electrochem. Soc. 139, 2091 (1992).10.1149/1.2221184Google Scholar
[2] Orman, H. J. and Wiseman, P. J., Acta Cryst. C40, 12 (1984).Google Scholar
[3] Ohzuku, T. and Ueda, A., J. Electrochem Soc. 141, 2972 (1994).Google Scholar
[4] Amatucci, G. G., Tarascon, J. M. and Klein, L. C., J. Electrochem. Soc. 143, 1114 (1996).10.1149/1.1836594Google Scholar
[5] Sanchez, J. M., Ducastelle, F. and Gratias, D., Physica 128A, 334 (1984).Google Scholar
[7] de Fontaine, D., in Solid State Physics (eds. Ehrenreich, H. & Turnbull, D.) 33 (Academic Press. 1994).Google Scholar
[8] Zunger, A., in Statics and Dynamics of Alloy Phase Transformations 361 (1994).10.1007/978-1-4615-2476-2_23Google Scholar
[9] Tepesch, P. D., Kohan, A. F., Garbulsky, G. D., Ceder, G., Coley, C., Stokes, H. T., Boyer, L. L., Mehl, M. J., Burton, B., Cho, K. and Joannopoulos, J., J. Am. Ceram. Soc. 79, 2033 (1996).10.1111/j.1151-2916.1996.tb08934.xGoogle Scholar
[10] Connolly, J. W. D. and Williams, A. R., Phys. Rev. B 27, 5169 (1983).10.1103/PhysRevB.27.5169Google Scholar
[11] Garbulsky, G. D. and Ceder, G., Phys. Rev. B 51, 67 (1995).Google Scholar
[12] Kohan, A. F. and Ceder, G., Computational Materials Science 8, 142 (1997).10.1016/S0927-0256(97)00027-XGoogle Scholar
[13] Binder, K. and Heermann, D. W., Monte Carlo simulation in statistical physics (Springer-Verlag, Berlin, 1988).Google Scholar
[14] Delmas, C., Fouassier, C. and Hagenmuller, P., Physica B 99, 81 (1980).Google Scholar
[15] Wolverton, C. and Zunger, A., Phys. Rev. B 57, 2242 (1998).10.1103/PhysRevB.57.2242Google Scholar
[16] Safran, S. A., Solid State Physics 40, 183 (1987).Google Scholar
[17] Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.54.11169Google Scholar
[18] Kresse, G. and Furthmuller, J., Computational Materials Science 6, 15 (1996).Google Scholar
[19] Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).10.1103/PhysRevB.41.7892Google Scholar
[20] Kresse, G. and Hafner, J., J. Phys.: Condens. Matter 6, 8245 (1994).Google Scholar
[21] van Elp, J., Wieland, J. L., Eskes, H., Kuiper, P., Sawatzky, G. A., de Groot, F. M. F. and Turner, T. S., Phys. Rev. B 44, 6090 (1991).10.1103/PhysRevB.44.6090Google Scholar
[22] Czyzyk, M. T., Potze, R. and Sawatzky, G. A., Phys. Rev. B 46, 3729 (1992).10.1103/PhysRevB.46.3729Google Scholar
[23] Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. and Joannopoulos, J., Phys. Rev. B 56, 1354 (1997).10.1103/PhysRevB.56.1354Google Scholar