Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-28T16:20:38.505Z Has data issue: false hasContentIssue false

3D Periodic Arrays of Nanoparticles Inside Mesoporous Silica Films

Published online by Cambridge University Press:  21 March 2011

Sophie Besson
Affiliation:
LPMC, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau France LSVI CNRS/Saint-Gobain, UMR CNRS 125, 39 quai Lucien Lefranc, 93303 Aubervilliers France
Thierry Gacoin
Affiliation:
LPMC, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau France
Catherine Jacquiod
Affiliation:
LSVI CNRS/Saint-Gobain, UMR CNRS 125, 39 quai Lucien Lefranc, 93303 Aubervilliers France
Christian Ricolleau
Affiliation:
LMCP, UMR CNRS 7590, Universités Paris 6 et 7, 4 place Jussieu, 75252 Paris France
Jean-Pierre Boilot
Affiliation:
LPMC, UMR CNRS 7643, Ecole Polytechnique, 91128 Palaiseau France
Get access

Abstract

CdS nanoparticles were grown inside a 3D hexagonal porous silica film. The film pore size and organization allowed the perfect control of particle repartition and size (3.5 nm), leading to a 3D nanocrystal array inside the silica matrix. The method was extended to another silica porous structure with larger pores, which allowed to obtain larger particles (5.8 nm). This process was then successfully generalized to other metal sulfides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shipway, A. N., Katz, E., Willner, I., Chemphyschem, 1, 18 (2000)Google Scholar
2. Beck, J.S., Vartuli, J.C., Roth, W.C., Leonowiccz, M.E., Kresge, C.T., J. Am. Chem. Soc., 114, 10834 (1992)Google Scholar
3. Huo, Q., Margolese, D. I., Stucky, G. D., Chem. Mater., 8, 1147 (1996)Google Scholar
4. Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., Stucky, G. D., J. Am. Chem. Soc., 120, 6024 (1998)Google Scholar
5. Wang, L.-Z., Shi, J.-L., Zhang, W.-H., Ruan, M.-L., Yu, J., Yan, D.-S., Chem. Mater., 11, 3015 (1999)Google Scholar
6. Kang, H., Jun, Y.-W., Park, J.-I., Lee, K.-B., J. Cheon. Chem. Mater., 12, 3530 (2000)Google Scholar
7. Besson, S., Gacoin, T., Jacquiod, C., Ricolleau, C., Babonneau, D., Boilot, J.-P., J. Mater. Chem., 10, 1331 (2000)Google Scholar
8. Besson, S., Gacoin, T., Ricolleau, C., Jacquiod, C., Boilot, J.-P. submitted to Adv. Mater.Google Scholar
9. Iler, R. K., in The Chemistry of Silica, (Ed: Wiley-Interscience), 667676 (1979)Google Scholar
10. Besson, S., Ricolleau, C., Gacoin, T., Jacquiod, C., Boilot, J.-P. J. Phys. Chem. B, 104, 51, 12095 (2000)Google Scholar
11. Wang, Y., Herron, N., Phys. Rev. B, 42, 7253 (1990)Google Scholar
12. Besson, S., Gacoin, T., Ricolleau, C., Jacquiod, C., Boilot, J.-P., to be published.Google Scholar