Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-26T12:03:35.719Z Has data issue: false hasContentIssue false

3D Discrete Dislocation Models Of Thin-Film Plasticity

Published online by Cambridge University Press:  10 February 2011

A. Hartmaier
Affiliation:
MPI für Metallforschung, Seestr. 92, D-70174 Stuttgart, Germany
M. C. Fivel
Affiliation:
GPM2/ENSPG, BP 46, 38402 St. Martin d'Hères cedex, France
G. R. Canova
Affiliation:
GPM2/ENSPG, BP 46, 38402 St. Martin d'Hères cedex, France
P. Gumbsch
Affiliation:
MPI für Metallforschung, Seestr. 92, D-70174 Stuttgart, Germany
Get access

Abstract

Three-dimensional simulation schemes for discrete dislocation dynamics (DDD) have been used successfully to investigate plasticity of bulk materials. The adaptation of these DDD schemes to a description of thin-film plasticity requires detailed modeling of the interfaces and surfaces of the film. One possible method is to compensate for the normal stresses that a dislocation distribution exerts on a surface by appropriate point loads. This traction-compensation method is extended to a free standing film (two opposing surfaces). The extension to a thin film on a substrate is possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kubin, L. P., Canova, G. R., Condat, M., Devincre, B., Pontikis, V., and Bréchet, Y., Solid State Phen. 23&24, 455 (1992).Google Scholar
2.Kubin, L. P. and Canova, G. R., Scr. metall. mater. 27, 957 (1992).Google Scholar
3.Fivel, M. C., Gosling, T. J., and Canova, G. R., Modelling Simul. Mater. Sci. Eng. 4,581 (1996).Google Scholar
4.Fivel, M. C., Verdier, T., and Canova, G. R., Mater. Sci. Eng. A 234–236,923 (1997).Google Scholar
5.Fivel, M. C., PhD thesis, INP Grenoble, France (1997).Google Scholar
6.de Wit, R., phys. stat. sol. 20, 567 (1967).Google Scholar
7.Devincre, B. and Condat, M., Acta metall. mater. 40, 2629 (1992).Google Scholar
8.Devincre, B. and Kubin, L. P., Modelling Simul. Mater. Sci. Eng. 2, 559 (1994).Google Scholar
9.Lubarda, V., Blume, J. A., and Needleman, A., Acta metall. mater. 41, 625 (1993).Google Scholar
10.Boussinesq, J.. Applications des potentiels à l'étude de l'équilibre des solides élastiques (Gautiers-Villars, Paris, 1885), p. 45.Google Scholar