Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T11:01:26.385Z Has data issue: false hasContentIssue false

30-nm-Scale Device Fabrication for Electron Transport Studies

Published online by Cambridge University Press:  25 February 2011

M. J. Rooks
Affiliation:
Yale University, Section of Applied Physics, P.O. Box 2157, New Haven, CT 06520
P. Mceuen
Affiliation:
Yale University, Section of Applied Physics, P.O. Box 2157, New Haven, CT 06520
S. Wind
Affiliation:
Yale University, Section of Applied Physics, P.O. Box 2157, New Haven, CT 06520
D. E. Prober
Affiliation:
Yale University, Section of Applied Physics, P.O. Box 2157, New Haven, CT 06520
Get access

Abstract

The study of quantum interference effects in metallic structures requires the lithographic resolution of electron-beam lithography. Resolution and reproducibility can be greatly enhanced by the use of a multilayer resist. We have implemented a polymethylmethacrylate (PMMA) bilayer resist which avoids the typical problem of intermixing of the layers. This is accomplished by an expedient choice of the solvent, xylene, for the upper resist layer. Metal lines 30 nm wide have been fabricated. We also describe an additional deep ultraviolet (DUV) exposure method which facilitates making electrical contact to these ultrasmall structures. Quantum interference, localization effects, and the electron phase-coherence time have been studied.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Molzen, W. W., Broers, A. N., Cuomo, J. J., Harper, J. M. E. and Laibowitz, R. B., J. Vac. Sci. Technol. 16, 269 (1980); R. B. Laibowitz and C. P. Umbach, in Percolation. Localization, and Superconductivity, NATO ASI Series B: Physics vol.109, (Plenum Press, New York 1983), p.267.CrossRefGoogle Scholar
2. Craighead, H. G., Howard, R. E., Jackel, L. D., and Mankiewich, P. M., Appl. Phys. Lett. 42, 38 (1983); P. M. Mankiewich, R. E. Howard, L. D. Jackel, W. J. Skocpol, and D. M. Tennant, J. Vac. Sci. Technol. B4, 380 (1986).CrossRefGoogle Scholar
3. Mackie, S. and Beaumont, S. P., Solid State Technol., 28, No. 8, 117 (1985).Google Scholar
4. Examples of recent scientific studies of nm-scale devices are given in the following, in Rcf. 5, and in references therein: a. Santhanam, P., Wind, S., and Prober, D. E., Phys. Rev. Lett. 53, 1179 (1984). b. V. Chandrasekhar, M. J. Rooks, S. Wind, and D. E. Prober, Phys. Rev. Lett. 55, 1610 (1985).CrossRefGoogle Scholar
5. a. Webb, R. A., Washburn, S., Umbach, C. P., and Laibowitz, R. B., Phys. Rev. Lett. 54, 2696 (1985); b. R. E. Howard, L. D. Jackel, P. M. Mankiewich, W. J. Skocpol, Science 231, 346 (1986).CrossRefGoogle Scholar
6. Phosphoric acid, nitric acid, nitric acid, water (16:1:1:2) mixture from Allied Chem. Co.Google Scholar
7. Lin, B. J., IBM J. Res. Develop. 20, 213 (1976), and J. Vac. Sci. Technol. 12, 1317 (1975).CrossRefGoogle Scholar
8. UVP Inc., San Gabriel CA, Preliminary Data Release Z-800/08/78.Google Scholar
9. Wind, S., Rooks, M. J., Chandrasekhar, V., and Prober, D. E., Phys. Rev. Lett. 57, 633 (1986).CrossRefGoogle Scholar
10. Alt'shuler, B. L., Aronov, A. G., and Khmelnitskii, D. E., J. Phys. C 15,7367 (1982).CrossRefGoogle Scholar