Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-06T19:47:41.006Z Has data issue: false hasContentIssue false

1.55 Micron Emission from InAs/InP Self-Assembled Quantum Dots

Published online by Cambridge University Press:  10 February 2011

Ray Murray
Affiliation:
Center for Electronic Materials and Devices, Imperial College, London, UK
Caroline Bryan
Affiliation:
Center for Electronic Materials and Devices, Imperial College, London, UK
Chris Button
Affiliation:
Department of Electrical and Electronic Engineering, University of Sheffield, Sheffield, UK
D. Spikes
Affiliation:
Center for Electronic Materials and Devices, Imperial College, London, UK
G. Hill
Affiliation:
Department of Electrical and Electronic Engineering, University of Sheffield, Sheffield, UK
Get access

Abstract

Self-assembled InAs/InP and InAs/InGaAsP quantum dots (QDs) grown by metal-organic chemical vapour epitaxy (MOVPE) exhibit emission at 1.5–1.6 μm at room temperature. P-I-N diodes incorporating a single InAs/InGaAsP QD layer exhibit strong electroluminescence over a wide range of input currents and emit significantly more light per layer than a InGaAs/InGaAsP multi-quantum well device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. , Arakawa and Sakaki, S., Appl.Phys.Lett. 40, 939 (1982)10.1063/1.92959Google Scholar
2. Asada, M., Miyamoto, Y. and Suematsu, Y., IEEE J.Quantum Elec., QE–22, 1915 (1986)10.1109/JQE.1986.1073149Google Scholar
3. , Blakenov, Nie, H., Anshelm, K.A., Campbell, J.C. and Streetman, B.G., Electron. Lett. 34, 694 (1998)10.1049/el:19980487Google Scholar
4. Gray, J.W., Childs, D., Malik, S., Siverns, P., Roberts, C., Stavrinou, P.N., Whitehead, M., Murray, R. and Parry, G., Electron. Lett. 35, 242 (1999)10.1049/el:19990114Google Scholar
5. Huffaker, D.L., and Deppe, D.G., Appl.Phys.Lett., 73, 520 (1998)10.1063/1.121920Google Scholar
6. Taskinen, M., Sopanen, M., Lipsanen, H., Tulkki, J. and Ahopelto, J., Surface Science, 376, 60 (1997)10.1016/S0039-6028(96)01597-XGoogle Scholar
7. Tabata, A., Benyattou, T., Guillot, G., Gendry, M., Hollinger, G. and Viktrovitch, P., J.Vac.Sci.Technol., B12, 2299 (1994)10.1116/1.587756Google Scholar
8. Siverns, P., Malik, S., McPherson, G., Childs, D., Roberts, C., Murray, R., Joyce, B.A. and Davock, H., Phys.Rev. B 58, R10127 (1998)10.1103/PhysRevB.58.R10127Google Scholar
9. Ponchet, A., Corre, A. Le, L'Haridon, H., Lambert, B. and Salatin, S., Appl.Phys.Lett. 67,1850 (1995)10.1063/1.114353Google Scholar
10. Murray, R., Childs, D., Malik, S., Roberts, C., Siverns, P., Hartmann, J-M and Stavrinou, P., Jpn.J.Appl.Phys., 38, 2022 (1999)Google Scholar
11. Malik, S., Roberts, C., Murray, R. and Pate, M., Appl.Phys.Lett., 71, p. 1987 (1997)10.1063/1.119763Google Scholar
12. Fréchengues, S., Drouot, V., Lemoine, D., Loualiche, S., Corre, A. Le and L'Haridon, H., Appl.Phys.Lett., 71, 2818 (1997)10.1063/1.120145Google Scholar