Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-26T21:08:35.385Z Has data issue: false hasContentIssue false

Thermoelectric figure of merit and thermal conductivity of type-I clathrate alloy nanowires

Published online by Cambridge University Press:  29 January 2019

Prabhjot Kaur
Affiliation:
Institute of Nano Science and Technology, Habitat Center, Phase-X, Mohali, Punjab – 160062, India
Georg K. H. Madsen
Affiliation:
Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria
Chandan Bera*
Affiliation:
Institute of Nano Science and Technology, Habitat Center, Phase-X, Mohali, Punjab – 160062, India
*
Address all correspondence to Chandan Bera at chandan@inst.ac.in
Get access

Abstract

Clathrates based on Si and Ge have very low lattice thermal conductivity (~1 W/m-K). This value can potentially be further reduced by alloying and nano-structuring. In this work, the thermal conductivity of Si and Ge clathrates alloy have been investigated using model based on the relaxation time approximation. By including alloy scattering, we find that the lattice thermal conductivity of Ba8Cu6Si40 is reduced by 50% from 1.64 to 0.80 W/m-K in Ba8Cu6Si40(1−x)Ge40x alloy. Further ~90% reduction of the thermal conductivity is possible for nanowire clathrate alloys. The ultra-low thermal conductivity in the nanowire will be very suitable for the thermoelectric application.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105114 (2008).Google Scholar
2.Mingo, N., Hauser, D., Kobayashi, N.P., Plissonnier, M., and Shakouri, A.: Nanoparticle-in-alloy approach to efficient thermoelectrics: silicides in sige. Nano Lett. 9, 711715 (2009).Google Scholar
3.Witanachchi, S., Hyde, R., Beekman, M., Mukherjee, D., Mukherjee, P., and Nolas, G.S.: Synthesis and characterization of bulk and thin film clathrates for solid state power conversion applications. In 2006 25th International Conference on Thermoelectrics (2006) pp. 4447.Google Scholar
4.Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., and Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 793818 (2003).Google Scholar
5.Goetzberger, A. and Hebling, C.: Photovoltaic materials, past, present, future. Sol. Energy Mater. Sol. Cells 62, 119 (2000).Google Scholar
6.Zalba, B., Mar´ın, J.M., Cabeza, L.F., and Mehling, H.: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251283 (2003).Google Scholar
7.Kaur, P., Chakraverty, S., Ganguli, A.K., and Bera, C.: High anisotropic thermoelectric effect in palladium phosphide sulphide. Phys. Status Solidi (b) 254, 1700021 (2017).Google Scholar
8.Bjerg, L., Iversen, B.B., and Madsen, G.K.H.: Modeling the thermal conductivities of the zinc antimonides znsb and zn4sb3. Phys. Rev. B 89, 024304 (2014).Google Scholar
9.Beekman, M. and VanderGraaff, A.: High-temperature thermal conductivity of thermoelectric clathrates. J. Appl. Phys. 121, 205105 (2017).Google Scholar
10.Cohn, J.L., Nolas, G.S., Fessatidis, V., Metcalf, T.H., and Slack, G.A.: Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 82, 779782 (1999).Google Scholar
11.Saramat, A., Svensson, G., Palmqvist, A.E.C., Stiewe, C., Mueller, E., Platzek, D., Williams, S.G.K., Rowe, D.M., Bryan, J.D., and Stucky, G.D.: Large thermoelectric figure of merit at high temperature in czochralski-grown clathrate ba8ga16ge30. J. Appl. Phys. 99, 023708 (2006).Google Scholar
12.Yang, J.-Y., Cheng, L., and Hu, M.: Unravelling the progressive role of rattlers in thermoelectric clathrate and strategies for performance improvement: concurrently enhancing electronic transport and blocking phononic transport. Appl. Phys. Lett. 111, 242101 (2017).Google Scholar
13.Christensen, S., Schmkel, M.S., Borup, K.A., Madsen, G.K.H., McIntyre, G.J., Capelli, S.C., Christensen, M., and Iversen, B.B.: glass-like thermal conductivity gradually induced in thermoelectric sr8ga16ge30 clathrate by off-centered guest atoms. J. Appl. Phys. 119, 185102 (2016).Google Scholar
14.Takabatake, T., Suekuni, K., Nakayama, T., and Kaneshita, E.: Phonon-glass electron-crystal thermoelectric clathrates: experiments and theory. Rev. Mod. Phys. 86, 669716 (2014).Google Scholar
15.Beekman, M., Schnelle, W., Borrmann, H., Baitinger, M., Grin, Y., and Nolas, G.S.: Intrinsic electrical and thermal properties from single crystals of na24si136. Phys. Rev. Lett. 104, 018301 (2010).Google Scholar
16.Nolas, G.S., Vanderveer, D.G., Wilkinson, A.P., and Cohn, J.L.: Temperature dependent structural and transport properties of the type ii clathrates a8na16e136 (a = cs or rb and e = ge or si). J. Appl. Phys. 91, 89708973 (2002), https://doi.org/10.1063/1.1471370.Google Scholar
17.Madsen, G.K.H., Katre, A., and Bera, C.: Calculating the thermal conductivity of the silicon clathrates using the quasi-harmonic approximation. Phys. Status Solidi (a) 213, 802807 (2016).Google Scholar
18.Euchner, H., Pailh`es, S., Giordano, V.M., and de Boissieu, M.: Understanding lattice thermal conductivity in thermoelectric clathrates: A density functional theory study on binary si-based type-i clathrates. Phys. Rev. B 97, 014304 (2018).Google Scholar
19.Togo, A., Oba, F., and Tanaka, I.: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).Google Scholar
20.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 17581775 (1999).Google Scholar
21.Klemens, P.G.: The scattering of low frequency lattice waves by static imperfections. Proc. Phys. Soc. A68, 11131128 (1955).Google Scholar
22.Abeles, B.: Lattice thermal conductivity of disordered semiconductor alloys at high temperature. Phys. Rev. 131, 19061911 (1963).Google Scholar
23.Chen, R., Hochbaum, A.I., Murphy, P., Moore, J., Yang, P., and Majumdar, A.: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008).Google Scholar
24.Bera, C., Soulier, M., Navone, C., Roux, G., Simon, J., Volz, S., and Mingo, N.: Thermoelectric properties of nanostructured si1 − xgex and potential for further improvement. J. Appl. Phys. 108, 124306 (2010).Google Scholar
25.Minnich, A.J., Lee, H., Wang, X.W., Joshi, G., Dresselhaus, M.S., Ren, Z.F., Chen, G., and Vashaee, D.: Modeling study of thermoelectric sige nanocomposites. Phys. Rev. B 80, 155327 (2009).Google Scholar
26.Mingo, N.: Calculation of si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003).Google Scholar
27.Madsen, G.K.H. and Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 6771 (2006).Google Scholar
28.Yan, X., Falmbigl, M., Laumann, S., Grytsiv, A., Bauer, E., Rogl, P., and Paschen, S.: Structural and thermoelectric properties of ba8cuxsi23-xge23. J. Electron. Mater. 41, 11591164 (2012).Google Scholar
29.Yan, X., Chen, M.X., Laumann, S., Bauer, E., Rogl, P., Podloucky, R., and Paschen, S.: Thermoelectric properties of ba-cu-si clathrates. Phys. Rev. B 85, 165127 (2012).Google Scholar
30.Kaur, P. and Bera, C.: Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS. Phys. Chem. Chem. Phys. 19, 2492824933 (2017).Google Scholar
Supplementary material: File

Kaur et al. supplementary material

Kaur et al. supplementary material 1

Download Kaur et al. supplementary material(File)
File 362.2 KB