Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-29T07:47:01.670Z Has data issue: false hasContentIssue false

Synthesis of a thermo- and pH-sensitive comb-type graft copolymer by ionizing radiation

Published online by Cambridge University Press:  17 August 2018

Victor H. Pino-Ramos*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
Emilio Bucio
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
*
Address all correspondence to Victor H. Pino-Ramos at victor.pino@correo.nucleares.unam.mx
Get access

Abstract

A thermo-pH sensitive graft copolymer was successfully obtained by grafting 4-vinylpyridine and N-vinylcaprolactam onto silicone rubber ((SR-g-4VP)-g-NVCL)) in two-step using ionizing radiation as an initiator. Factors such as dose and monomer concentration remarkably affected the grafting yield. Surface grafted films were well characterized by means of infrared-attenuated total reflection, carbon-13 nuclear magnetic resonance, thermogravimetric analysis, and mechanical properties were also studied. Scanning electron microscopy demonstrated that the grafting was superficial; mechanical studies demonstrated that grafting caused loss elongation of SR films. The grafted films showed a critical pH close to physiological pH and a critical temperature (lower critical solution temperature) about 35 °C, therefore, this material presents potential biomedical applications as drug delivery.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev. 58, 1655 (2006).Google Scholar
2.Burillo, G., Bucio, E., Arenas, E., and Lopez, G.P.: Temperature and pH-sensitive swelling behavior of binary DMAEMA/4VP grafts on poly(propylene) films. Macromol. Mater. Eng. 292, 214 (2007).Google Scholar
3.Cortez-Lemus, N.A. and Licea-Claverie, A.: Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog. Polym. Sci. 53, 1 (2016).Google Scholar
4.Laukkanen, A., Valtola, L., Winnik, F.M., and Tenhu, H.: Thermosensitive graft copolymers of an amphiphilic macromonomer and N-vinylcaprolactam: synthesis and solution properties in dilute aqueous solutions below and above the LCST. Polymer 46, 7055 (2005).Google Scholar
5.Kirsh, Y.E., Yanul, N.A., and Kalninsh, K.K.: Structural transformation and water associate interaction in poly N-vinylcaprolactam-water system. Eur. Polym. J. 35, 305 (1999).Google Scholar
6.Alvarez-Lorenzo, C., Bucio, E., Burillo, G., and Concheiro, A.: Medical devices modified at the surface by g-ray grafting for drug loading and delivery. Expert Opin. Drug Delivery 7, 173 (2010).Google Scholar
7.Bucio, E. and Burillo, G.: Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process. Radiat. Phys. Chem. 76, 1724 (2007).Google Scholar
8.Melendez-Ortiz, H.I., Bucio, E., and Burillo, G.: Radiation-grafting of 4-vinylpyridine and N-isopropylacrylamide onto polypropylene to give novel pH and thermo-sensitive films. Radiat. Phys. Chem. 78, 1 (2009).Google Scholar
9.Goddard, J.M. and Hotchkiss, J.H.: Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 32, 698 (2007).Google Scholar
10.Soliman, Y.S., Beshir, W.B., Abdel-Fattah, A.A., and Abdel-Rehim, F., Dosimetric studies for gamma radiation validation of medical devices. Appl. Radiat. Isot. 71, 21 (2013).Google Scholar
11.Pino-Ramos, V.H., Alvarez-Lorenzo, C., Concheiro, A., and Bucio, E.: One-step grafting of temperature-and pH-sensitive (N-vinylcaprolactam-co-4-vinylpyridine) onto silicone rubber for drug delivery. Des. Monomers Polym. 20, 33 (2017).Google Scholar
12.Magaña, H., Palomino, K., Cornejo-Bravo, J.M., Alvarez-Lorenzo, C., Concheiro, A., and Bucio, E.: Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery. Radiat. Phys. Chem. 107, 164 (2015).Google Scholar
13.Mundargi, R.C., Rangaswamy, V., and Aminabhavi, T.M.: A novel method to prepare 5-fluorouracil, an anti-cancer drug, loaded microspheres from poly(N-vinylcaprolactam-coacylamide) and controlled release studies. Des. Monomers Polym. 13, 225 (2010).Google Scholar
14.Sahiner, N. and Ozay, O.: Responsive tunable colloidal soft materials based on p(4-VP) for potential biomedical and environmental applications. Colloids Surf., A 378, 50 (2011).Google Scholar
15.Madhusudana Rao, K., Mallikarjuna, B., Krishna Rao, K.S.V., Siraj, S., Chowdoji Rao, K., and Subha, M.C.S., Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf., B 102, 891 (2013).Google Scholar
16.Massey, L.K.: The 2011 Effect of Sterilization Methods on Plastics and Elastomers Plastics Design Library, 2nd ed., William Andrew (Elsevier, Amsterdam, 2004), pp. 19, ISBN 0815515057.Google Scholar
17.Palsule, A.S., Clarson, S.J., and Widenhouse, C.W.: Gamma irradiation of silicones. J. Inorg. Organomet. Polym. 18, 207 (2008).Google Scholar
18.Frounchi, M., Dadbin, S., and Panahinia, F.: Comparison between electron-beam and chemical crosslinking of silicone rubber. Nucl. Instrum. Methods Phys. Res., Sect. B 243, 354 (2006).Google Scholar
19.Silindir, M. and Yekta Özer, A.: Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. J. Pharm. Sci. 34, 43 (2009).Google Scholar
20.Traeger, R.K. and Castonguay, T.T.: Effect of γ-radiation on the dynamic mechanical properties of silicone rubbers. J. Appl. Polym. Sci. 10, 535 (1966).Google Scholar
21.Ruggieri, Michael R., Hanno, Philip M., and Levin, Robert M.: Reduction of bacterial adherence to catheter surface with Heparin. J. Urol. 138, 423 (1987).Google Scholar
22.Ding, X., Yang, C., Lim, T.P., Yang Hsu, L., Engler, A.C., Hedrick, J.L., and Yang, Y.Y.: Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 33, 6593 (2012).Google Scholar
23.Campoccia, D., Montanaro, L., and Arciola, C.R.: A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34, 8533 (2013).Google Scholar
24.Schierholz, J.M. and Beuth, J.: Implant infections: a haven for opportunistic bacteria. J. Hosp. Infect. 49, 87 (2001).Google Scholar
25.Doyle, R.J.: Contribution of the hydrophobic effect to microbial infection. Microbes Infect. 2, 391 (2000).Google Scholar
26.Hernández-Martínez, A.R., and Bucio, E.: Novel pH- and temperature-sensitive behavior of binary graft DMAEMA/PEGMEMA onto LDPE membranes. Des. Monomers Polym. 12, 543 (2009).Google Scholar
27.Philippova, Olga E., Hourdet, Dominique, Audebert, Roland, and Khokhlov, Alexei R.: pH-Responsive gels of hydrophobically modified poly(acrylic acid). Macromolecules 30, 8278 (1997).Google Scholar
28.Siegel, Ronald A.: Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics. Adv. Polym. Sci. 109, 233 (1993).Google Scholar
29.Siegel, R.A. and Firestone, B.A.: pH-Dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 21, 3254 (1988).Google Scholar
30.Rogel-Hernández, E., Licea-Claveríe, A., Cornejo-Bravo, J.M., and Arndt, K.F.. Preparación de hidrogeles anfifílicos sensibles a diferentes valores de pH utilizando monómeros ácidos con espaciadores hidrofóbicos. Rev. Soc. Quim. Mex. 47, 251 (2003).Google Scholar
31.Pino-Ramos, V.H., Flores-Rojas, G.G., Alvarez-Lorenzo, C., Concheiro, A., and Bucio, E.: Graft copolymerization by ionization radiation, characterization, and enzymatic activity of temperature-responsive SR-g-PNVCL loaded with lysozyme. React. Funct. Polym. 126, 74 (2018).Google Scholar
32.Ruiz, J.C., Burillo, G., and Bucio, G.: Interpenetrating thermo and pH stimuli-responsive polymer networks of PAAc/PNIPAAm grafted onto PP. Macromol. Mater. Eng. 292, 1176 (2007).Google Scholar
33.Cai, H., Zhang, Z.P., Sun, P.C., He, B.L., and Zhu, X.X.: Synthesis and characterization of thermo- and pH-sensitive hydrogels based on Chitosan-grafted N-isopropylacrylamide via γ-radiation. Radiat. Phys. Chem. 74, 26 (2005).Google Scholar
34.Lin, L., Shaoqing, B., Huiqin, Y., Shubai, L., Jing, Q., Limin, Z., and Huali, N.: Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: the effects of hydrophilicity/hydrophobicity of a drug. Mater. Sci. Eng., C 67, 581 (2016).Google Scholar
35.Desrousseaux, C., Sautou, V., Descamps, S., and Traoré, O.. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J. Hosp. Infect. 85, 87 (2013).Google Scholar
36.Jones, K.S.: Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin. Immunol. 20, 130 (2008).Google Scholar
Supplementary material: File

Pino-Ramos and Bucio supplementary material

Pino-Ramos and Bucio supplementary material 1

Download Pino-Ramos and Bucio supplementary material(File)
File 305.6 KB