Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T14:14:03.507Z Has data issue: false hasContentIssue false

Stability of electron field emission in Q-carbon

Published online by Cambridge University Press:  13 September 2018

Ariful Haque*
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695.7916, USA
Jagdish Narayan
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695.7916, USA
*
Address all correspondence to Ariful Haque at ahaque@ncsu.edu
Get access

Abstract

In this study, we have investigated electron field emission (EFE) characteristics of Q-carbon at room temperature and above. At room temperature the Q-carbon requires only ~2.4 V/μm electric field to turn-on the EFE. The EFE properties of the Q-carbon composite structure improve with temperature by lowering the turn-on field and increasing the current density. At 500 K we observed a turn-on field of ~2.34 V/μm, and a maximum current density was found to be ~53 µA/cm2 at 2.66 V/μm. The Q-carbon field emitters also show very stable EFE characteristics (within 7% fluctuations) over time for current intensities between 7.5 and 47 µA/cm2.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Itoh, S., Tanaka, M., and Tonegawa, T.: Development of field emission displays. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 22, 13621366 (2004).Google Scholar
2.Talin, A.A., Dean, K.A., and Jaskie, J.E.: Field emission displays: a critical review. Solid-State Electron. 45, 963976 (2001).Google Scholar
3.Haque, A. and Narayan, J.: Electron field emission from Q-carbon. Diam. Relat. Mater. 86, 7178 (2018).Google Scholar
4.Manikandan, E., Kennedy, J., Kavitha, G., Kaviyarasu, K., Maaza, M., Panigrahi, B.K., and Mudali, U.K.: Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J. Alloys Compd. 647, 141145 (2015).Google Scholar
5.van der Weide, J., Zhang, Z., Baumann, P.K., Wensell, M.G., Bernholc, J., and Nemanich, R.J.: Negative-electron-affinity effects on the diamond (100) surface. Phys. Rev. B. 50, 58035806 (1994).Google Scholar
6.Cui, J.B., Ristein, J., and Ley, L.: Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81, 429432 (1998).Google Scholar
7.Harniman, R.L., Fox, O.J.L., Janssen, W., Drijkoningen, S., Haenen, K., and May, P.W.: Direct observation of electron emission from grain boundaries in CVD diamond by PeakForce-controlled tunnelling atomic force microscopy. Carbon. 94, 386395 (2015).Google Scholar
8.Glesener, J.W. and Morrish, A.A.: Investigation of the temperature dependence of the field emission current of polycrystalline diamond films. Appl. Phys. Lett. 69, 785787 (1996).Google Scholar
9.Chubenko, O., Baturin, S.S., Kovi, K.K., Sumant, A.V., and Baryshev, S.V.: Locally resolved electron emission area and unified view of field emission from ultrananocrystalline diamond films. ACS Appl. Mater. Interfaces. 9, 3322933237 (2017).Google Scholar
10.Okano, K., Koizumi, S., Silva, S.R.P., and Amaratunga, G.A.J.: Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond. Nature. 381, 140141 (1996).Google Scholar
11.Zhu, W., Kochanski, G.P., and Jin, S.: Low-field electron emission from undoped nanostructured diamond. Science. 282, 14711473 (1998).Google Scholar
12.Latham, R.V.: High Voltage Vacuum Insulation: Basic Concepts and Technological Practice (Elsevier, 1995).Google Scholar
13.Diamond, W.T.: New perspectives in vacuum high voltage insulation. I. The transition to field emission. J. Vac. Sci. Technol. A. 16, 707719 (1998).Google Scholar
14.Robertson, J.: Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 17, 659665 (1999).Google Scholar
15.Isono, R., Tanimoto, T., Iijima, Y., Kusumawan, S.A., Harigai, T., Suda, Y., Takikawa, H., Kamiya, M., Kaneko, S., Kunitsugu, S., and Taki, M.: Improvement of adhesion of hydrogen-free DLC film by employing an interlayer of tungsten carbide. AIP Conf. Proc. 1929, 020019 (2018).Google Scholar
16.Talin, A.A., Felter, T.E., Friedmann, T.A., Sullivan, J.P., and Siegal, M.P.: Electron field emission from amorphous tetrahedrally bonded carbon films. J. Vac. Sci. Technol. A. 14, 17191722 (1996).Google Scholar
17.Gröning, O., Küttel, O.M., Schaller, E., Gröning, P., and Schlapbach, L.: Vacuum arc discharges preceding high electron field emission from carbon films. Appl. Phys. Lett. 69, 476478 (1996).Google Scholar
18.Poa, C.H.P., Silva, S.R.P., Lacerda, R.G., Amaratunga, G.A.J., Milne, W.I., and Marques, F.C.: Effects of applying stress on the electron field emission properties in amorphous carbon thin films. Appl. Phys. Lett. 86, 232102 (2005).Google Scholar
19.Ghosh, K., Kumar, M., Maruyama, T., and Ando, Y.: Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon. 48, 191200 (2010).Google Scholar
20.Kennedy, J., Fang, F., Futter, J., Leveneur, J., Murmu, P.P., Panin, G.N., Kang, T.W., and Manikandan, E.: Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 7984 (2017).Google Scholar
21.Das, D. and Singh, R.N.: A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52, 2964 (2007).Google Scholar
22.Bocharov, G.S. and Eletskii, A.V.: Theory of carbon nanotube (CNT)-based electron field emitters. Nanomaterials. 3, 393442 (2013).Google Scholar
23.Ye, D., Moussa, S., Ferguson, J.D., Baski, A.A., and El-Shall, M.S.: Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays. Nano Lett. 12, 12651268 (2012).Google Scholar
24.Manikandan, E., Kavitha, G., and Kennedy, J.: Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40, 1606516070 (2014).Google Scholar
25.Kleshch, V.I., Bandurin, D.A., Orekhov, A.S., Purcell, S.T., and Obraztsov, A.N.: Edge field emission of large-area single layer graphene. Appl. Surf. Sci. 357, 19671974 (2015).Google Scholar
26.Fujii, S., Honda, S., Machida, H., Kawai, H., Ishida, K., Katayama, M., Furuta, H., Hirao, T., and Oura, K.: Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect. Appl. Phys. Lett. 90, 153108 (2007).Google Scholar
27.Narayan, J. and Bhaumik, A.: Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).Google Scholar
28.Narayan, J., Bhaumik, A., Gupta, S., Haque, A., and Sachan, R.: Progress in Q-carbon and related materials with extraordinary properties. Mater. Res. Lett. 6, 353364 (2018).Google Scholar
29.Bhaumik, A., Nori, S., Sachan, R., Gupta, S., Kumar, D., Majumdar, A.K., and Narayan, J.: Room-temperature ferromagnetism and extraordinary hall effect in nanostructured Q-carbon: implications for potential spintronic devices. ACS Appl. Nano Mater. 1, 807819 (2018).Google Scholar
30.Chuang, F.Y., Sun, C.Y., Cheng, H.F., Huang, C.M., and Lin, I.N.: Enhancement of electron emission efficiency of Mo tips by diamondlike carbon coatings. Appl. Phys. Lett. 68, 16661668 (1996).Google Scholar
31.Humphreys, V.L. and Khachan, J.: Spatial correlation of electron field emission sites with non-diamond carbon content in CVD diamond. Electron. Lett. 31, 10181019 (1995).Google Scholar
32.Lin, C.-M., Chang, S.-J., Yokoyama, M., Chuang, F.-Y., Tsai, C.-H., Wang, W.-C., and Lin, I.-N.: Electron field emission characteristics of planar field emission array with diamondlike carbon electron emitters. Jpn. J. Appl. Phys. 38, 890 (1999).Google Scholar
33.Stratton, R.: Field emission from semiconductors. Proc. Phys. Soc. Sect. B. 68, 746 (1955).Google Scholar
34.Li, S.Q., Liang, Y.X., and Wang, T.H.: Nonlinear characteristics of the Fowler–Nordheim plot for field emission from In2O3 nanowires grown on InAs substrate. Appl. Phys. Lett. 88, 053107 (2006).Google Scholar
35.Borzyak, P.G., Yatsenko, A.F., and Miroshnichenko, L.S.: Photo-field-emission from high-resistance silicon and germanium. Phys. Status Solidi B. 14, 403411 (2006).Google Scholar
36.Lim, S.C., Jeong, H.J., Shin, Y.M., Kim, K.S., Kim, W.S., Park, Y.S., Choi, Y.C., An, K.H., Bae, D.J., and Lee, Y.H.: Saturation of emission current from carbon nanotube field emission array. AIP Conf. Proc. 590, 221224 (2001).Google Scholar
37.Fursey, G.N.: Field Emission in Vacuum Microelectronics (Springer, US, New York, 2005).Google Scholar
38.Baskin, L.M., Lvov, O.I., and Fursey, G.N.: General features of field emission from semiconductors. Phys. Status Solidi B. 47, 4962 (2006).Google Scholar
39.Chen, J., Huang, N.Y., Liu, X.W., Deng, S.Z., and Xu, N.S.: Analysis of the field-electron energy distribution from amorphous carbon-nitride films. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 21, 567570 (2003).Google Scholar
40.Narayan, J., Gupta, S., Bhaumik, A., Sachan, R., Cellini, F., and Riedo, E.: Q-carbon harder than diamond. MRS Commun. 8, 19 (2018).Google Scholar
41.Carey, J.D., Forrest, R.D., Khan, R.U.A., and Silva, S.R.P.: Influence of sp2 clusters on the field emission properties of amorphous carbon thin films. Appl. Phys. Lett. 77, 20062008 (2000).Google Scholar
42.Carey, J.D., Forrest, R.D., and Silva, S.R.P.: Origin of electric field enhancement in field emission from amorphous carbon thin films. Appl. Phys. Lett. 78, 23392341 (2001).Google Scholar
43.Satyanarayana, B.S., Hart, A., Milne, W.I., and Robertson, J.: Field emission from tetrahedral amorphous carbon. Diam. Relat. Mater. 7, 656659 (1998).Google Scholar
44.Guo, P.S., Sun, Z., Huang, S.M., and Sun, Y.: Temperature effect on field emission properties and microstructures of polymer-based carbon films. J. Appl. Phys. 98, 074906 (2005).Google Scholar
45.Robertson, J.: Electron affinity of carbon systems. Diam. Relat. Mater. 5, 797801 (1996).Google Scholar
Supplementary material: File

Haque and Narayan supplementary material

Haque and Narayan supplementary material 1

Download Haque and Narayan supplementary material(File)
File 16 KB
Supplementary material: Image

Haque and Narayan supplementary material

Figure S1

Download Haque and Narayan supplementary material(Image)
Image 270.7 KB
Supplementary material: Image

Haque and Narayan supplementary material

Figure S2

Download Haque and Narayan supplementary material(Image)
Image 191.5 KB