Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T04:50:04.335Z Has data issue: false hasContentIssue false

Preparation of graphene oxide-reinforced calcium phosphate/calcium sulfate/methylcellulose-based injectable bone substitutes

Published online by Cambridge University Press:  13 September 2019

Öznur Demir Oğuz
Affiliation:
Boğaziçi University, Institute of Biomedical Engineering, Istanbul34684, Turkey
Duygu Ege*
Affiliation:
Boğaziçi University, Institute of Biomedical Engineering, Istanbul34684, Turkey
*
Address all correspondence to Duygu Ege at duygu.ege@boun.edu.tr
Get access

Abstract

In this study, an injectable bone substitute (IBS) was produced by mixing a liquid and powder phase. The liquid phase consisted of 8 wt% methylcellulose (MC), 2.5% gelatin, and different amounts of graphene oxide (GO). The powder phase was composed of tetracalcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD), and calcium sulfate dihydrate (CSD). The results showed that 1 and 1.5 wt% GO added IBS samples showed higher stability, injectability, rheological properties, and biocompatibility than the other GO added IBS samples. GO addition significantly decreased the setting time, but it did not significantly affect the compressive strength of the samples.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chen, Z., Zhang, X., Kang, L., Xu, F., Wang, Z., Cui, F.Z., and Guo, Z.: Recent progress in injectable bone repair materials research. Front. Mater. Sci. 9, 332 (2015).CrossRefGoogle Scholar
2.Larsson, S. and Bauer, T.W.: Use of injectable calcium phosphate cement for fracture fixation: a review. Clin. Orthop. Relat. Res. 395, 2332 (2002).CrossRefGoogle Scholar
3.Brown, W.E. and Chow, L.C.: A new calcium phosphate setting cement. J. Dent. Res. 62, 672 (1983).Google Scholar
4.Śmiga-Matuszowicz, M., Łukaszczyk, J., Pilawka, R., Basiaga, M., Bilewicz, M., and Kusz, D.: Novel crosslinkable polyester resin–based composites as injectable bioactive scaffolds. Int. J. Polym. Mater. Polym. Biomater. 66, 111 (2017).CrossRefGoogle Scholar
5.Sharifi, S., Imani, M., Mirzadeh, H., Atai, M., Ziaee, F., and Bakhshi, R.: Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonate-based macromers. J. Biomed. Mater. Res. A 90, 830843 (2009).CrossRefGoogle ScholarPubMed
6.Thai, V.V. and Lee, B.T.: Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid. J. Mater. Sci. Mater. Med. 21, 18671874 (2010).CrossRefGoogle ScholarPubMed
7.Ginebra, M.P., Traykova, T., and Planell, J.A.: Calcium phosphate cements as bone drug delivery systems: a review. J. Control. Release 113, 102110 (2006).CrossRefGoogle ScholarPubMed
8.Liu, H., Li, H., Cheng, W., Yang, Y., Zhu, M., and Zhou, C.: Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater. 2, 557565 (2006).CrossRefGoogle ScholarPubMed
9.Priya, M.V., Sivshanmugam, A., Boccaccini, A.R., Goudouri, O.M., Sun, W., Hwang, N., Deepthi, S., Nair, S.V., and Jayakumar, R.: Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomed. Mater. 11, 035017 (2016).CrossRefGoogle Scholar
10.O'Neill, R., McCarthy, H.O., Montufar, E.B., Ginebra, M.-P., Wilson, D.I., Lennon, A., and Dunne, N.: Critical review: injectability of calcium phosphate pastes and cements. Acta Biomater. 50, 119 (2017).CrossRefGoogle ScholarPubMed
11.Ghanaati, S., Barbeck, M., Hilbig, U., Hoffmann, C., Unger, R.E., Sader, R.A., Peters, F., and Kirkpatrick, C.J.: An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Acta Biomater. 7, 40184028 (2011).CrossRefGoogle ScholarPubMed
12.Krause, M., Oheim, R., Catala-Lehnen, P., Pestka, J.M., Hoffmann, C., Huebner, W., Peters, F., Barvencik, F., and Amling, M.: Metaphyseal bone formation induced by a new injectable beta-TCP-based bone substitute: a controlled study in rabbits. J. Biomater. Appl. 28, 859868 (2014).CrossRefGoogle ScholarPubMed
13.Wang, H., Leeuwenburgh, S.C.G., Li, Y., and Jansen, J.A.: The use of micro- and nanospheres as functional components for bone tissue regeneration. Tissue Eng. Part B Rev. 18, 2439 (2012).CrossRefGoogle ScholarPubMed
14.Dessi, M., Alvarez-Perez, M.A., De Santis, R., Ginebra, M.P., Planell, J.A., and Ambrosio, L.: Bioactivation of calcium deficient hydroxyapatite with foamed gelatin gel. A new injectable self-setting bone analogue. J. Mater. Sci. Mater. Med. 25, 283295 (2014).CrossRefGoogle ScholarPubMed
15.Bongio, M., Nejadnik, M.R., Kasper, F.K., Mikos, A.G., Jansen, J.A., Leeuwenburgh, S.C.G., and van den Beucken, J.J.J.P.: Development of an in vitro confinement test to predict the clinical handling of polymer-based injectable bone substitutes. Polym. Test. 32, 13791384 (2013).CrossRefGoogle Scholar
16.Ege, D., Kamali, A.R., and Boccaccini, A.R.: Graphene oxide/polymer-based biomaterials. Adv. Eng. Mater. 19, 1700627 (2017).CrossRefGoogle Scholar
17.Baudín, C., Benet, T., and Pena, P.: Effect of graphene on setting and mechanical behaviour of tricalcium phosphate bioactive cements. J. Mech. Behav. Biomed. Mater. 89, 3347 (2019).CrossRefGoogle ScholarPubMed
18.Zhenkun, X., Haoran, Y., Tao, W., Ruizhen, W., Zhang, P., Xiaoying, L., and Jie, W.: Effects of adding reduced-graphene oxide/polypyrrole composites on the structure and properties of calcium phosphate cement. Chem. J. Chinese Univ. 36, 25982603 (2015).Google Scholar
19.Wu, C., Xia, L., Han, P., Xu, M., Fang, B., Wang, J., Chang, J., and Xiao, Y.: Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon 93, 116129 (2015).CrossRefGoogle Scholar
20.Gao, C., Feng, P., Peng, S., and Shuai, C.: Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater. 61, 120 (2017).CrossRefGoogle ScholarPubMed
21.Oğuz, Ö.D. and Ege, D.: Rheological and mechanical properties of thermoresponsive methylcellulose/calcium phosphate-based injectable bone substitutes. Materials 11, 604 (2018).CrossRefGoogle Scholar
22.Wang, S., Zhang, S., Wang, Y., Sun, X., and Sun, K.: Reduced graphene oxide/carbon nanotubes reinforced calcium phosphate cement. Ceram. Int. 43, 1308313088 (2017).CrossRefGoogle Scholar
23.Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., Salonna, G., Lattanzi, W., and Logroscino, G.: Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med. 25, 24452461 (2014).CrossRefGoogle ScholarPubMed
24.Lian, S., Xiao, Y., Bian, Q., Xia, Y., Guo, C., Wang, S., and Lang, M.: Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL. Int. J. Nanomedicine 7, 48934905 (2012).Google ScholarPubMed
25.Nasrollahi, N., Dehkordi, A.N., Jamshidizad, A., and Chehelgerdi, M.: Preparation of brushite cements with improved properties by adding graphene oxide. Int. J. Nanomedicine 14, 37853797 (2019).CrossRefGoogle ScholarPubMed
26.Liu, Z. and Yao, P.: Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property. Carbohydr. Polym. 132, 490498 (2015).CrossRefGoogle ScholarPubMed
27.Chiang, T.Y., Ho, C.C., Chen, D.C.H., Lai, M.H., and Ding, S.J.: Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements. Mater. Chem. Phys. 120, 282288 (2010).CrossRefGoogle Scholar
28.Liu, J., Li, Q., and Xu, S.: Reinforcing mechanism of graphene and graphene oxide sheets on cement-based materials. J. Mater. Civ. Eng. 31, 04019014 (2019).CrossRefGoogle Scholar
29.von Lospichl, B., Hemmati-Sadeghi, S., Dey, P., Dehne, T., Haag, R., Sittinger, M., Ringe, J., and Gradzielski, M.: Biointerfaces Injectable hydrogels for treatment of osteoarthritis – a rheological study. Colloids Surf. B 159, 477483 (2017).CrossRefGoogle ScholarPubMed
30.Misch, C.E., Qu, Z., and Bidez, M.W.: Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J. Oral Maxillofac. Surg. 57, 700706 (1999).CrossRefGoogle ScholarPubMed
31.Prasadh, S., Suresh, S., and Wong, R.: Osteogenic potential of graphene in bone tissue engineering scaffolds. Materials 11, 1430 (2018).CrossRefGoogle ScholarPubMed
32.Gurunathan, S., Kang, M.-H., Jeyaraj, M., and Kim, J.H.: Differential cytotoxicity of different sizes of graphene oxide nanoparticles in leydig (TM3) and sertoli (TM4) cells. Nanomaterials 9, 139 (2019).CrossRefGoogle ScholarPubMed
Supplementary material: File

Demir Oğuz and Ege supplementary material

Demir Oğuz and Ege supplementary material

Download Demir Oğuz and Ege  supplementary material(File)
File 493.5 KB