Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T15:08:52.229Z Has data issue: false hasContentIssue false

Optimized mixed phases to achieve improved performance of organic solar cells

Published online by Cambridge University Press:  17 October 2019

Yanlin Yi
Affiliation:
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, Liaoning124221, China
Xu Gao
Affiliation:
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
Jian Yuan
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Jiangang Liu
Affiliation:
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
Wei Ma
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Yanchun Han*
Affiliation:
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
*
Address all correspondence to Yanchun Han at ychan@ciac.ac.cn
Get access

Abstract

In the three-phase (pure donor, pure acceptor, and mixed phases) morphologies of organic solar cells, the mixed phases produce an energy cascade that promotes the generation of free carriers. However, how to optimize the content of the mixed phases is a challenging problem. The authors proposed to control different content of mixed phases in DRTB-T and IDIC blends by additive and solvent vapor annealing (SVA). The authors first formed the largest extent amount of mixed phases by the additive cinene (2%) to inhibit the crystallization of DRTB-T and IDIC. And then, different amounts of mixed phases were achieved by further SVA for different times (from 0 to 50 s) to increase the content of pure DRTB-T and IDIC phases. The energetic offsets (ΔE) of pure and mixed phases gradually decrease from 0.529 to 0.477 eV for different content of mixed phases. When ΔE was 0.498 eV, the highest photocurrent density (Jsc) was obtained. The power conversion efficiency was increased from 3.23% (without any treatment) to 8.54%. Therefore, the authors demonstrated that the optimized content of the mixed phases is critical to device performance.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Clarke, T.M. and Durrant, J.R.: Charge photogeneration in organic solar cells. Chem. Rev. 110, 67366767 (2010).CrossRefGoogle ScholarPubMed
2.Scarongella, M., De Jonghe-Risse, J., Buchaca-Domingo, E., Causa’, M., Fei, Z., Heeney, M., Moser, J.-E., Stingelin, N., and Banerji, N.: A close look at charge generation in polymer: fullerene blends with microstructure control. J. Am. Chem. Soc. 137, 29082918 (2015).CrossRefGoogle Scholar
3.Yang, L., Zhang, S., He, C., Zhang, J., Yao, H., Yang, Y., Zhang, Y., Zhao, W., and Hou, J.: New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells. J. Am. Chem. Soc. 139, 19581966 (2017).CrossRefGoogle ScholarPubMed
4.Zhang, Q., Chen, Z., Ma, W., Xie, Z., Liu, J., Yu, X., and Han, Y.: Efficient nonhalogenated solvent-processed ternary all-polymer solar cells with a favorable morphology enabled by two well-compatible donors. ACS Appl. Mater. Interfaces 11, 3220032208 (2019).CrossRefGoogle ScholarPubMed
5.Cao, X., Zhang, Q., Zhou, K., Yu, X., Liu, J., Han, Y., and Xie, Z.: Improve exciton generation and dissociation by increasing fullerene content in the mixed phase of P3HT/fullerene. Colloids Surf. A 506, 723731 (2016).CrossRefGoogle Scholar
6.Vandewal, K., Tvingstedt, K., Gadisa, A., Inganas, O., and Manca, J.V.: On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 8, 904909 (2009).CrossRefGoogle ScholarPubMed
7.Holliday, S., Li, Y., and Luscombe, C.K.: Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Prog. Polym. Sci. 70, 3451 (2017).CrossRefGoogle Scholar
8.Sweetnam, S., Graham, K.R., Ngongang Ndjawa, G.O., Heumuller, T., Bartelt, J.A., Burke, T.M., Li, W., You, W., Amassian, A., and McGehee, M.D.: Characterization of the polymer energy landscape in polymer: fullerene bulk heterojunctions with pure and mixed phases. J. Am. Chem. Soc. 136, 1407814088 (2014).CrossRefGoogle ScholarPubMed
9.Westacott, P., Tumbleston, J.R., Shoaee, S., Fearn, S., Bannock, J.H., Gilchrist, J.B., Heutz, S., deMello, J., Heeney, M., Ade, H., Durrant, J., McPhail, D.S., and Stingelin, N.: On the role of intermixed phases in organic photovoltaic blends. Energy Environ. Sci. 6, 2756 (2013).CrossRefGoogle Scholar
10.Pfannmoller, M., Flugge, H., Benner, G., Wacker, I., Sommer, C., Hanselmann, M., Schmale, S., Schmidt, H., Hamprecht, F.A., Rabe, T., Kowalsky, W., and Schroder, R.R.: Visualizing a homogeneous blend in bulk heterojunction polymer solar cells by analytical electron microscopy. Nano Lett. 11, 30993107 (2011).CrossRefGoogle ScholarPubMed
11.Zhang, Q., Liu, J., Yu, X., and Han, Y.: Design optimized intermixed phase by tuning polymer-fullerene intercalation for free charge generation. Chin. Chem. Lett. 30, 14051409 (2019).CrossRefGoogle Scholar
12.Osaka, M., Benten, H., Ohkita, H., and Ito, S.: Intermixed donor/acceptor region in conjugated polymer blends visualized by conductive atomic force microscopy. Macromolecules 50, 16181625 (2017).CrossRefGoogle Scholar
13.McDowell, C., Abdelsamie, M., Toney, M.F., and Bazan, G.C.: Solvent additives: key morphology-directing agents for solution-processed organic solar cells. Adv. Mater (30), e1707114 (2018).CrossRefGoogle Scholar
14.Jamieson, F.C., Domingo, E.B., McCarthy-Ward, T., Heeney, M., Stingelin, N., and Durrant, J.R.: Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3, 485492 (2012).CrossRefGoogle Scholar
15.Bartelt, J.A., Beiley, Z.M., Hoke, E.T., Mateker, W.R., Douglas, J.D., Collins, B.A., Tumbleston, J.R., Graham, K.R., Amassian, A., Ade, H., Fréchet, J.M.J., Toney, M.F., and McGehee, M.D.: The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3, 364374 (2013).CrossRefGoogle Scholar
16.Groves, C.: Suppression of geminate charge recombination in organic photovoltaic devices with a cascaded energy heterojunction. Energy Environ. Sci. 6, 1546 (2013).CrossRefGoogle Scholar
17.Huang, Y., Kramer, E.J., Heeger, A.J., and Bazan, G.C.: Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev. 114, 70067043 (2014).CrossRefGoogle ScholarPubMed
18.Buchaca-Domingo, E., Ferguson, A.J., Jamieson, F.C., McCarthy-Ward, T., Shoaee, S., Tumbleston, J.R., Reid, O.G., Yu, L., Madec, M.B., Pfannmöller, M., Hermerschmidt, F., Schröder, R.R., Watkins, S.E., Kopidakis, N., Portale, G., Amassian, A., Heeney, M., Ade, H., Rumbles, G., Durrant, J.R., and Stingelin, N.: Additive-assisted supramolecular manipulation of polymer: fullerene blend phase morphologies and its influence on photophysical processes. Mater. Horiz. 1, 270279 (2014).CrossRefGoogle Scholar
19.Huang, B., Amonoo, J.A., Li, A., Chen, X.C., and Green, P.F.: Role of domain size and phase purity on charge carrier density, mobility, and recombination in poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester devices. J. Phys. Chem. C 118, 39683975 (2014).CrossRefGoogle Scholar
20.Burke, T.M. and McGehee, M.D.: How high local charge carrier mobility and an energy cascade in a three-phase bulk heterojunction enable >90% quantum efficiency. Adv. Mater. 26, 19231928 (2014).CrossRefGoogle Scholar
21.Tsoi, W.C., Spencer, S.J., Yang, L., Ballantyne, A.M., Nicholson, P.G., Turnbull, A., Shard, A.G., Murphy, C.E., Bradley, D.D.C., Nelson, J., and Kim, J.-S.: Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM blends. Macromolecules 44, 29442952 (2011).CrossRefGoogle Scholar
22.Alqahtani, O., Babics, M., Gorenflot, J., Savikhin, V., Ferron, T., Balawi, A.H., Paulke, A., Kan, Z., Pope, M., Clulow, A.J., Wolf, J., Burn, P.L., Gentle, I.R., Neher, D., Toney, M.F., Laquai, F., Beaujuge, P.M., and Collins, B.A.: Mixed domains enhance charge generation and extraction in bulk-heterojunction solar cells with small-molecule donors. Adv. Energy Mater. 8, 1702941 (2018).CrossRefGoogle Scholar
23.Liang, Q., Han, J., Song, C., Wang, Z., Xin, J., Yu, X., Xie, Z., Ma, W., Liu, J., and Han, Y.: Tuning molecule diffusion to control the phase separation of the p-DTS(FBTTh2)2/EP-PDI blend system via thermal annealing. J. Mater. Chem. C 5, 68426851 (2017).CrossRefGoogle Scholar
24.Li, M., Liang, Q., Zhao, Q., Zhou, K., Yu, X., Xie, Z., Liu, J., and Han, Y.: A bi-continuous network structure of p-DTS(FBTTh2)2/EP-PDI via selective solvent vapor annealing. J. Mater. Chem. C 4, 1009510104 (2016).CrossRefGoogle Scholar
25.Liu, Y.-D., Zhang, Q., Yu, X.-H., Liu, J.-G., and Han, Y.-C.: Increasing the content of β phase of poly(9,9-dioctylfluorene) by synergistically controlling solution aggregation and extending film-forming time. Chin. J. Polym. Sci. 37, 664673 (2019).CrossRefGoogle Scholar
26.Zhang, H., Wang, X., Yang, L., Zhang, S., Zhang, Y., He, C., Ma, W., and Hou, J.: Improved domain size and purity enables efficient all-small-molecule ternary solar cells. Adv. Mater 29, 201703777 (2017).CrossRefGoogle ScholarPubMed
27.Liu, J., Chen, L., Gao, B., Cao, X., Han, Y., Xie, Z., and Wang, L.: Constructing the nanointerpenetrating structure of PCDTBT:PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing. J. Mater. Chem. A 1, 6216 (2013).CrossRefGoogle Scholar
28.Yang, L., Zhang, S., He, C., Zhang, J., Yang, Y., Zhu, J., Cui, Y., Zhao, W., Zhang, H., Zhang, Y., Wei, Z., and Hou, J.: Modulating molecular orientation enables efficient nonfullerene small-molecule organic solar cells. Chem. Mater. 30, 21292134 (2018).CrossRefGoogle Scholar
Supplementary material: File

Yi et al. supplementary material

Yi et al. supplementary material

Download Yi et al. supplementary material(File)
File 1.2 MB