Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T00:08:35.030Z Has data issue: false hasContentIssue false

Investigation of carrier transfer mechanism of NiO-loaded n-type GaN photoanodic reaction for water oxidation by comparison between band model and optical measurements

Published online by Cambridge University Press:  26 April 2018

Kayo Koike
Affiliation:
RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Takenari Goto
Affiliation:
RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Shinichiro Nakamura
Affiliation:
RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Satoshi Wada
Affiliation:
RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Katsushi Fujii*
Affiliation:
RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
*
Address all correspondence to Katsushi Fujii at katsushi.fujii@riken.jp
Get access

Abstract

The electrochemical catalytic effects of the NiO islands and layer on n-type GaN were investigated. The NiO islands covered some parts of the GaN surface and were seen to improve photoanodic current and prevent photoanodic corrosion. However, the NiO layer was found to worsen the photoanodic current. Hole transportation is thought to occur from the GaN valence band edge to the NiO valence band edge in their surface plane direction due to the band alignment. In addition, the electron capture for water oxidation is expected to be the valence band edge of the NiO instead of the intermediate state.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fujii, K., Nakamura, S., Watanabe, K., Bagheri, B., Sugiyama, M., and Nakano, Y.: Over 12% light to hydrogen energy conversion efficiency of hydrogen generation from water: New system concept, concentrated photovoltaic electrochemical cell (CPEC). Mater. Res. Soc. Symp. Proc. 1491, DOI: 10.1557-opl.2012, 1739 (2012).Google Scholar
2.McCrory, C.C.L., Jung, S., Peters, J.C., and Jaramillo, T.F.: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013).Google Scholar
3.Galán-Mascarós, J.R.: Water oxidation at electrodes modified with earth-abundant transition-metal catalysts. ChemElectroChem 2, 37 (2015).Google Scholar
4.Nozik, A.J. and Memming, R.: Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100, 13061 (1996).Google Scholar
5.Memming, R.: Semiconductor Electrochemistry. Chap.7 Charge Transfer Processes at the Semiconductor-liquid Interface, p. 190; 2015, 2nd ed., John Wiliy & Sons, Weinheim, Germany, 2008, Chap.7 Charge Transfer Processes at the Semiconductor-liquid Interface, p. 213.Google Scholar
6.Winnerl, A., Garrido, J.A., and Stutzmann, M.: Electrochemical characterization of GaN surface states. J. Appl. Phys. 122, 045302 (2017).Google Scholar
7.Sasi, B., Gopchandran, K.G., Manoj, P.K., Koshy, P., Rao, P.P., and Vaidyan, V.K.: Preparation of transparent and semiconducting NiO films. Vacuum 68, 149 (2003).Google Scholar
8.Hayashi, T., Deura, M., and Ohkawa, K.: High stability and efficiency of GaN photocatalyst for hydrogen generation from water. Jpn. J. Appl. Phys. 51, 112601 (2012).Google Scholar
9.Kim, S.H., Ebaid, M., Kang, J.-H., and Ryu, S.-W.: Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst. Appl. Surf. Sci. 305, 638 (2014).Google Scholar
10.Kang, J.-H., Kim, S.H., Ebaid, M., Lee, J.K., and Ryu, S.-W.: Efficient photoelectrochemical water splitting by a doping-controlled GaN photoanode coated with NiO cocatalyst. Acta Mater. 79, 188 (2014).Google Scholar
11.Koike, K., Yamamoto, K., Ohara, S., Sugiyama, M., Nakano, Y., and Fujii, K.: Photoelectrochemical property differences between NiO dots and layer on n-type GaN for water splitting. J. Electrochem. Soc. 163, H1091 (2016).Google Scholar
12.Koike, K., Yamamoto, K., Ohara, S., Kikitsu, T., Ozasa, K., Nakamura, S., Sugiyama, M., Nakano, Y., and Fujii, K.: Effects of NiO-loading on n-type GaN photoanode for photoelectrochemical water splitting using different aqueous electrolytes. Int. J. Hydrog. Energy 42, 9493 (2017).Google Scholar
13.Fujii, K. and Ohkawa, K.: Photoelectrochemical properties of p-Type GaN in comparison with n-type GaN. Jpn. J. Appl. Phys. 44, L909 (2005).Google Scholar
14.Fujii, K. and Ohkawa, K.: Bias-assisted H2 gas generation in HCl and KOH solutions using n-type GaN photoelectrode. J. Electrochem. Soc. 153, A468 (2006).Google Scholar
15.Van de Walle, C.G. and Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626 (2003).Google Scholar
16.Toroker, M.C., Kanan, D.K., Alidoust, N., Isseroff, L.Y., Liaob, P., and Carter, E.A.: First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys. Chem. Chem. Phys. 13, 16644 (2011).Google Scholar
17.Ramond, T.M., Davico, G.E., Hellberg, F., Svedberg, F., Salén, P., Söderqvist, P., and Lineberger, W.C.: Photoelectron spectroscopy of nickel, palladium, and platinum oxide anions. J. Mol. Spectrosc. 216, 1 (2002).Google Scholar
18.Sokolov, V.I., Pustovarov, V.A., Churmanov, V.N., Ivanov, V.Yu, Gruzdev, N.B., Sokolov, P.S., Baranov, A.N., and Moskvin, A.S.: Unusual x-ray excited luminescence spectra of NiO suggestive of a self-trapping of the d-d charge transfer exciton. Phys. Rev. B 86, 115128 (2012).Google Scholar
19.Peng, H.Y., Li, Y.F., Lin, W.N., Wang, Y.Z., Gao, X.Y., and Wu, T.: Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation. Sci. Rep. 2, 442 (2012).Google Scholar
20.Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., and Marks, T.J.: p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. USA 105, 2783 (2008).Google Scholar
21.Reshchikov, M.A. and Morkoç, H.: Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005).Google Scholar
22.Fujii, K., Ono, M., Iwaki, Y., Sato, K., Ohkawa, K., and Yao, T.: Photoelectrochemical properties of the p-n junction in and near the surface depletion region of n-type GaN. J. Phys. Chem. C 114, 22727 (2010).Google Scholar