Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-03T21:21:16.577Z Has data issue: false hasContentIssue false

From polydisperse diatomaceous earth to biosilica with specific morphologies by glucose gradient/dialysis: a natural material for cell growth

Published online by Cambridge University Press:  02 May 2017

S.R. Cicco
Affiliation:
CNR-ICCOM-Via Orabona, 4- 70125 Bari, Italy
D. Vona
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona, 4- 70125 Bari, Italy
G. Leone
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona, 4- 70125 Bari, Italy
M. Lo Presti
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona, 4- 70125 Bari, Italy
F. Palumbo
Affiliation:
CNR NANOTEC- Via Orabona, 4- 70125 Bari, Italy
E. Altamura
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona, 4- 70125 Bari, Italy
R. Ragni
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona, 4- 70125 Bari, Italy
G.M. Farinola*
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona, 4- 70125 Bari, Italy
*
Address all correspondence to G.M. Farinola at gianlucamaria.farinola@uniba.it
Get access

Abstract

Starting from polydisperse diatomaceous earth (DE), we proposed an efficient separation method for obtaining different morphologies of biosilica from diatoms. DE is a very low-cost source of silica containing all the differently nanostructured elements. By a glucose gradient/dialysis, three types of biosilica morphologies were achieved: rods, valves, and clusters. We fully characterized the diatom fractions and we used them to produce fluorescent biosilica platforms (“tabs”). These supports exhibited good resistance in water, ethanol, and soft scraping. A preliminary biologic application by testing Saos-2 proliferation was also performed to check osteoblasts-like cells biologic attitude for this scaffolds with tunable nanostructure.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alothman, Z.-A.: A review: fundamental aspects of silicate mesoporous materials. Materials 5, 28742902 (2013).Google Scholar
2. Luelf, H., Devaux, A., Prasetyanto, E.-A., and De Cola, L.: Porous nanomaterials for biomedical applications. In Organic Nanomaterials: Synthesis, Characterization, and Device Applications, edited by Torres, T., Bottari, G. (John Wiley & Sons., Inc., Hoboken, New Jersey, 2013), Chapter 22, pp. 487507.CrossRefGoogle Scholar
3. Pagliaro, M.: Silica-Based Materials for Advanced Chemical Applications (RSC Publishing, Cambridge, 2009), Chapter 8, pp. 176186.Google Scholar
4. Slowing, I.-I., Trewyn, B.-G., Giri, S., and Lin, V.-S.-Y.: Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 17, 12251236 (2007).CrossRefGoogle Scholar
5. Jugdaohsingh, R.: Silicon and bone health. J. Nutr. Health Aging 11, 99110 (2007).Google ScholarPubMed
6. Arumugam, M.-Q., Ireland, D.-C., Brooks, R.-A., Rushton, N., and Bonfield, W.: Orthosilicic acid increases collagen type I mRNA expression in human bone-derived osteoblasts in vitro. Key Eng. Mater. 254–256, 869872 (2004).Google Scholar
7. López-Álvarez, M., Solla, E.-L., González, P., Serra, J., León, B., Marques, A.-P., and Reis, R.-L.: Silicon–hydroxyapatite bioactive coatings (Si–HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. J. Mater. Sci: Mater. Med. 20, 11311136 (2009).Google Scholar
8. Lohmann, C.-H., Tandy, E. M., Sylvia, V.-L., Hell-Vocke, A.-K., Cochran, D.-L., Dean, D.-D., Boyan, B.-D., and Schwartz, Z.: Response of normal female human osteoblasts (NHOst) to 17β-estradiol is modulated by implant surface morphology. J. Biomed. Mater. Res. 62, 204213 (2002).Google Scholar
9. Boyan, B.-D., Lossdorfer, S., Wang, L., Zhao, G., Lohmann, C.-H., Cochran, D.-L., and Schwartz, Z.: Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur. Cell. Mater. 5, 1112 (2003).Google Scholar
10. Mante, M., Daniels, B., Golden, E., Diefenderfer, D., Reilly, G., and Leboy, P.-S.: Attachment of human marrow stromal cells to titanium surfaces. J. Oral. Implantol. 29, 6672 (2003).Google Scholar
11. Lossdorfer, S., Schwartz, Z., Wang, L., Lohmann, C. H., Turner, J.-D., Wieland, M., Cochran, D.-L., and Boyan, B.-D.: Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. Biomed. Mater. Res. 70A, 361369 (2004).CrossRefGoogle Scholar
12. Zinger, O., Anselme, K., Denzer, A., Habersetzer, P., Wieland, M., Jeanfils, J., Hardouin, P., and Landolt, D.: Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25, 26952711 (2004).CrossRefGoogle ScholarPubMed
13. Lüthen, F., Lange, R., Becker, P., Rychly, J., Beck, U., and Nebe, J.-G.-B.: The influence of surface roughness of titanium on β1- and β3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials 26, 24232440 (2005).CrossRefGoogle ScholarPubMed
14. Schweikl, H., Müller, R., Englert, C., Hiller, K.-A., Kujat, R., Nerlich, M., and Schmalz, G.: Proliferation of osteoblasts and fibroblasts on model surfaces of varying roughness and surface chemistry. J. Mater. Sci.: Mater. Med. 18, 18951905 (2007).Google Scholar
15. Martin, J.-Y., Schwartz, Z., Hummert, T.-W., Schraub, D.-M., Simpson, J., Lankford, J. Jr, Dean, D.-D., Cochran, D.-L., and Boyan, B.-D.: Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J. Biomed. Mater. Res. 29, 389401 (1995).CrossRefGoogle ScholarPubMed
16. Kieswetter, K., Schwartz, Z., Humrnert, T.-W., Cochran, D.-L., Simpson, J., Dean, D.-D., and Boyan, B.-D.: Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J. Biomed. Mater. Res. 32, 5563 (1996).Google Scholar
17. Price, R.-L., Ellison, K., Haberstroh, K.-M., and Webster, T.-J.: Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. Biomed. Mater. Res. 70A, 129138 (2004).Google Scholar
18. Zinger, O., Zhao, G., Schwartz, Z., Simpson, J., Wieland, M., Landolt, D., and Boyan, B.: Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 26, 18371847 (2005).CrossRefGoogle ScholarPubMed
19. Zhang, D., Wang, Y., Pan, J., and Cai, J.: Separation of diatom valves and girdle bands from Coscinodiscus diatomite by settling method. J. Mater. Sci. 45, 57365741 (2010).CrossRefGoogle Scholar
20. Carlisle, K.-B., Brito, V., Gladysz, G.-M., Ricci, W., and Koopman, M.: Fabrication and finite element modeling of ellipsoidal macro-shells. J. Mater. Sci. 44, 1449–1445 (2009).Google Scholar
21. Vona, D., Leone, G., Ragni, R., Palumbo, F., Evidente, A., Vurro, M., Farinola, G.-M., and Cicco, S.: Diatoms biosilica as efficient drug-delivery system. MRS Adv. 1, 38253830 (2015).CrossRefGoogle Scholar
22. Cicco, S.-R., Vona, D., De Giglio, E., Cometa, S., Mattioli-Belmonte, M., Palumbo, F., Ragni, R., and Farinola, G.-M.: Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties. ChemPlusChem 80, 11041112 (2015).Google Scholar
23. Jiang, W., Luo, S., Liu, P., Deng, X., Jing, Y., Bai, C., and Li, J.: Purification of biosilica from living diatoms by a two-step acid cleaning and baking method. J. Appl. Phycol. 26, 15111518 (2014).CrossRefGoogle Scholar
24. Hanson, B.-J., Schulenberg, B., Patton, W.-F., and Capaldi, R.-A.: A novel subfractionation approach for mitochondrial proteins: a three-dimensional mitochondrial proteome map. Electrophoresis 22, 950959 (2001).3.0.CO;2-D>CrossRefGoogle ScholarPubMed
25. Hanson, B.-J., Carrozzo, R., Piemonte, F., Tessa, A., Robinson, B.-H., and Capaldi, R.-A.: Cytochrome c oxidase-deficient patients have distinct subunit assembly profiles. J. Biol. Chem. 276, 1629616301 (2001).Google Scholar
26. Pálmai, M., Nagy, L.-N., Mihály, J., Varga, Z., Tárkányi, G., Mizsei, R., Szigyártó, I. C., Kiss, T., Kremmer, T., and Bóta, A.: Preparation, purification, and characterization of aminopropyl-functionalized silica sol. J. Colloid Int. Sci. 390, 3440 (2013).Google Scholar
27. Lang, Y., Del Monte, F., Rodriguez, B.-J., Dockery, P., Finn, D.-P., and Pandit, A.: Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis. Sci. Rep. 3, 111 (2013). doi: 10.1038/srep03205.Google Scholar
28. Ohtsuka, Y., Seki, T., and Takeoka, Y.: Thermally tunable hydrogels displaying angle-independent structural colors. Angew. Chem. 54, 1536815373 (2015).Google Scholar
29. Gale, D.-K., Jeffryes, C., Gutu, T., Jiao, J., Chang, C., and Rorrer, G.-L.: Thermal annealing activates amplified photoluminescence of germanium metabolically doped in diatom biosilica. J. Mater. Chem. 21, 1065810665 (2011).CrossRefGoogle Scholar
Supplementary material: File

Cicco supplementary material

Cicco supplementary material 1

Download Cicco supplementary material(File)
File 3 MB