Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T20:40:40.253Z Has data issue: false hasContentIssue false

Ferroelectric domain engineering of lithium niobate single crystal confined in glass

Published online by Cambridge University Press:  29 January 2019

Keith Veenhuizen*
Affiliation:
Department of Physics, Lebanon Valley College, Annville, Pennsylvania 17003, USA
Sean McAnany
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
Rama Vasudevan
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Daniel Nolan
Affiliation:
Corning Incorporated, Corning, New York 14830, USA
Bruce Aitken
Affiliation:
Corning Incorporated, Corning, New York 14830, USA
Stephen Jesse
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Sergei V. Kalinin
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Himanshu Jain
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
Volkmar Dierolf
Affiliation:
Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
*
Address all correspondence to Keith Veenhuizen at veenhuiz@lvc.edu
Get access

Abstract

Ferroelectric single-crystal-architecture-in-glass is a new class of metamaterials that would enable active integrated optics if the ferroelectric behavior is preserved within the confines of glass. We demonstrate using lithium niobate crystals fabricated in lithium niobosilicate glass by femtosecond laser irradiation that not only such behavior is preserved, the ferroelectric domains can be engineered with a DC bias. A piezoresponse force microscope is used to characterize the piezoelectric and ferroelectric behavior. The piezoresponse correlates with the orientation of the crystal lattice as expected for unconfined crystal, and a complex micro- and nano-scale ferroelectric domain structure of the as-grown crystals is revealed.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Miura, K., Qiu, J., Inouye, H., Mitsuyu, T., and Hirao, K.: Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329 (1997).Google Scholar
2.Choudhury, D., Macdonald, J.R., and Kar, A.K.: Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev. 8, 827 (2014).Google Scholar
3.Shimotsuma, Y., Kazansky, P., Qiu, J., and Hirao, K.: Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003).Google Scholar
4.Komatsu, T. and Honma, T.: Laser patterning and characterization of optical active crystals in glasses. J. Asian Ceram. Soc. 1, 9 (2013).Google Scholar
5.Honma, T., Benino, Y., Fujiwara, T., Komatsu, T., and Sato, R.: Technique for writing of nonlinear optical single-crystal lines in glass. Appl. Phys. Lett. 83, 2796 (2003).Google Scholar
6.Honma, T., Benino, Y., Fujiwara, T., and Komatsu, T.: Transition metal atom heat processing for writing of crystal lines in glass. Appl. Phys. Lett. 88, 231105 (2006).Google Scholar
7.Miura, K., Qiu, J., Mitsuyu, T., and Hirao, K.: Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. Opt. Lett. 25, 408 (2000).Google Scholar
8.Stone, A., Jain, H., Dierolf, V., Sakakura, M., Shimotsuma, Y., Miura, K., Hirao, K., Lapointe, J., and Kashyap, R.: Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics. Sci. Rep. 5, 10391 (2015).Google Scholar
9.Cao, J., Mazerolles, L., Lancry, M., Brisset, F., and Poumellec, B.: Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure. J. Opt. Soc. Am. B 34, 160 (2017).Google Scholar
10.Veenhuizen, K., McAnany, S., Nolan, D., Aitken, B., Dierolf, V., and Jain, H.: Fabrication of graded index single crystal in glass. Sci. Rep. 7, 44327 (2017).Google Scholar
11.Weis, R.S. and Gaylord, T.K.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191 (1985).Google Scholar
12.Miller, R.C. and Savage, A.: Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3. Appl. Phys. Lett. 9, 169 (1966).Google Scholar
13.Neumayer, S.M., Ivanov, I.N., Manzo, M., Kholkin, A.L., Gallo, K., and Rodriguez, B.J.: Interface and thickness dependent domain switching and stability in Mg doped lithium niobate. J. Appl. Phys. 118, 224101 (2015).Google Scholar
14.Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyk, O.V., Eliseev, E.A., Kholkin, A.L., Shur, V.Ya, and Kalinin, S.V.: Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano 9, 769 (2015).Google Scholar
15.Gruverman, A., Auciello, O., and Tokumoto, H.: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101 (1998).Google Scholar
16.Gruverman, A., Wu, D., Fan, H.-J., Vrejoiu, I., Alexe, M., Harrison, R.J., and Scott, J.F.: Vortex ferroelectric domains. J. Phys.: Condens. Matter 20, 342201 (2008).Google Scholar
17.Balke, N., Choudhury, S., Jesse, S., Huijben, M., Chu, Y.H., Baddorf, A.P., Chen, L.Q., Ramesh, R., and Kalinin, S.V.: Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868 (2009).Google Scholar
18.Jia, C.-L., Urban, K.W., Alexe, M., Hesse, D., and Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420 (2011).Google Scholar
19.McQuaid, R.G.P., McGilly, L.J., Sharma, P., Gruverman, A., and Gregg, J.M.: Mesoscale flux-closure domain formation in single-crystal BaTiO3. Nat. Commun. 2, 404 (2011).Google Scholar
20.Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Williams, D.B., and Gruverman, A.: Vector piezoresponse force microscopy. Microsc. Microanal. 12, 206 (2006).Google Scholar
21.Gupta, P., Jain, H., Williams, D.B., Kalinin, S.V., Shin, J., Jesse, S., and Baddorf, A.P.: Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy. Appl. Phys. Lett. 87, 172903 (2005).Google Scholar