Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T22:35:05.676Z Has data issue: false hasContentIssue false

Electrochemical characterization of poly(3,4-ethylenedioxythiophene)/κ-carrageenan as a biocompatible conductive coat for biologic applications

Published online by Cambridge University Press:  12 September 2018

Priscila Hernandez-Suarez*
Affiliation:
Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica
Karla Ramirez
Affiliation:
Escuela de Biología, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica
Fernando Alvarado
Affiliation:
Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica
E. Avendano
Affiliation:
Escuela de Física, Universidad de Costa Rica, San José 2060, Costa Rica Centro de Investigación en Ciencia e Ingeniería de Materiales CICIMA, Universidad de Costa Rica, 2060 San José, Costa Rica
Ricardo Starbird*
Affiliation:
Centro de Investigación y de Servicios Químicos y Microbiológicos CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica
*
Address all correspondence to Priscila Hernandez-Suarez, Ricardo Starbird at priscilahernandez@estudiantec.cr, rstarbird@itcr.ac.cr
Address all correspondence to Priscila Hernandez-Suarez, Ricardo Starbird at priscilahernandez@estudiantec.cr, rstarbird@itcr.ac.cr
Get access

Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) is synthesized through a micellar dispersion that allows incorporation of biomolecules into this conductive polymer layer. A PEDOT:κ-carrageenan (κC) system was obtained by electrodeposition and it was compared with a standard PEDOT:sodium dodecyl sulfate electrode coat. The electrochemical behavior and the oxidation level after 1000 cycles were studied through cyclic voltammetry and μRaman spectroscopy. The oxidation ratio in the PEDOT increased while electrochemical activity decreased in both cases. Moreover, the PEDOT:κC system allowed the immobilization of the acetylcholinesterase enzyme, which retained its activity. The unique combination of properties is a key feature in the bioelectronics field.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Balint, R., Cassidy, N.J., and Cartmell, S.H.: Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10, 2341 (2014).Google Scholar
2.Starbird, R., García-González, C.A., Smirnova, I., Krautschneider, W.H., and Bauhofer, W.: Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Mater. Sci. Eng. C 37, 177 (2014).Google Scholar
3.Asplund, M., von Holst, H., and Inganäs, O.: Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3, 83 (2008).Google Scholar
4.Boehler, C., Oberueber, F., Schlabach, S., Stieglitz, T., and Asplund, M.: Long-term stable adhesion for conducting polymers in biomedical applications: IrOx and nanostructured platinum solve the chronic challenge. ACS Appl. Mater. Interfaces 9, 189 (2017).Google Scholar
5.Gribkova, O.L., Iakobson, O.D., Nekrasov, A.A., Cabanova, V.A., Tverskoy, V.A., and Vannikov, A.V.: The influence of polyacid nature on poly(3,4-ethylenedioxythiophene) electrosynthesis and its spectroelectrochemical properties. J. Solid State Electrochem. 20, 2991 (2016).Google Scholar
6.Ogata, A.F., Edgar, J.M., Majumdar, S., Briggs, J.S., Patterson, S.V., Tan, M.X., Kudlacek, S.T., Schneider, C.A., Weiss, G.A., and Penner, R.M.: Virus-enabled biosensor for human serum albumin. Anal. Chem. 89, 1373 (2017).Google Scholar
7.Starbird, R., Bauhofer, W., Meza-Cuevas, M., and Krautschneider, W.H.: Effect of experimental factors on the properties of PEDOT-NaPSS galvanostatically deposited from an aqueous micellar media for invasive electrodes. BMEiCON-2012. Proc. 1, Ubon Ratchathani, Thailand, 2012, p. 1.Google Scholar
8.Mantione, D., del Agua, I., Sanchez-Sanchez, A., and Mecerreyes, D.: Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: innovative conductive polymers for bioelectronics. Polymers 9, 354 (2017).Google Scholar
9.Chiu, W.W., Travaš-Sejdić, J., Cooney, R.P., and Bowmaker, G.A.: Studies of dopant effects in poly(3,4-ethylenedioxythiophene) using Raman spectroscopy. J. Raman Spectrosc. 37, 1354 (2006).Google Scholar
10.Nasybulin, E., Wei, S., Kymissis, I., and Levon, K.: Effect of solubilizing agent on properties of poly(3,4- ethylenedioxythiophene) (PEDOT) electrodeposited from aqueous solution. Electrochim. Acta 78, 638 (2012).Google Scholar
11.Stokes, R.J. and Evans, D.F.: Fundamentals of interfacial engineering, 1st ed. Wiley-VCH: New York, USA, 1997, p. 212.Google Scholar
12.Sakmeche, N., Aaron, J.J., Fall, M., Aeiyach, S., Jouini, M., Lacroix, J.C., and Lacaze, P.C.: Anionic micelles; a new aqueous medium for electropolymerization of poly(3,4-ethylenedioxythiophene) films on Pt electrodes. Chem. Commun. 0, 2723 (1996).Google Scholar
13.Sakmeche, N., Aeiyach, S., Aaron, J.J., Jouini, M., Lacroix, J.C., and Lacaze, P.C.: Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 15, 2566 (1999).Google Scholar
14.Wu, X., Pei, W., Zhang, H., Chen, Y., Guo, X., Chen, H., and Wang, S.: Sodium dodecyl sulfate doping PEDOT to enhance the performance of neural microelectrode. J. Electroanal. Chem. 758, 26 (2015).Google Scholar
15.Atta, N.F., Galal, A., and Ahmed, R.A.: Direct and simple electrochemical determination of morphine at PEDOT modified Pt electrode. Electroanalysis 23, 737 (2011).Google Scholar
16.Muñoz-Bonilla, A. and Fernández-García, M.: Poly(ionic liquid)s as antimicrobial materials. Eur. Polym. J. 105, 135 (2018).Google Scholar
17.Gratzer, P.F., Harrison, R.D., and Woods, T.: Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularized matrix. Tissue Eng. 12, 2975 (2006).Google Scholar
18.Rieder, E., Kasimir, M.T., Silberhumer, G., Seebacher, G., Wolner, E., Simon, P., and Weigel, G.: Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 127, 399 (2004).Google Scholar
19.Asplund, M., Thaning, E., Lundberg, J., Sandberg-Nordqvist, A.C., Kostyszyn, B., Inganäs, O., and Von Holst, H.: Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 4, 45009 (2009).Google Scholar
20.De Ruiter, G.A. and Rudolph, B.: Carrageenan biotechnology. Trends Food Sci. Technol. 8, 389 (1997).Google Scholar
21.Zamora-Sequeira, R., Ardao, I., Starbird, R., and García-González, C.A.: Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohydr. Polym. 189, 304 (2018).Google Scholar
22.Ng, C.A., and Camacho, D.H.: Polymer electrolyte system based on carrageenan-poly(3,4-ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell. IOP Conf. Ser. Mater. Sci. Eng. Proc. 79, Davao City, Philippines, 2015, p. 12020.Google Scholar
23.Dohi, S., Terasaki, M., and Makino, M.: Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils. J. Agric. Food Chem. 57, 4313 (2009).Google Scholar
24.Nickerson, M.T., Paulson, A.T., and Hallett, F.R.: Dilute solution properties of κ-carrageenan polysaccharides: effect of potassium and calcium ions on chain conformation. Carbohydr. Polym. 58, 25 (2004).Google Scholar
25.Walsh, F.C. and Ponce de Leon, C.: A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans. IMF 92, 83 (2014).Google Scholar
26.Zhang, Y., Arugula, M.A., Wales, M., Wild, J., and Simonian, A.L.: A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphorus pesticides. Biosens. Bioelectron. 67, 287 (2015).Google Scholar
27.Gribkova, O.L., Iakobson, O.D., Nekrasov, A.A., Cabanova, V.A., Tverskoy, V.A., Tameev, A.R., and Vannikov, A.V.: Ultraviolet-visible-near infrared and Raman spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) complexes with sulfonated polyelectrolytes. The role of inter- and intra-molecular interactions in polyelectrolyte. Electrochim. Acta 222, 409 (2016).Google Scholar
28.Stavytska-Barba, M. and Kelley, A.M.: Surface-enhanced Raman study of the interaction of PEDOT:PSS with plasmonically active nanoparticles. J. Phys. Chem. C 114, 6822 (2010).Google Scholar
29.Tran-Van, F., Garreau, S., Louarn, G., Froyer, G., and Chevrot, C.: Fully undoped and soluble oligo(3,4-ethylenedioxythiophene)s: spectroscopic study and electrochemical characterization. J. Mater. Chem. 11, 1378 (2001).Google Scholar
30.Correia, J.P. and Abrantes, L.M.: Ellipsometry to access structural information of electroactive polymer films. Mater. Sci. Forum 455–456, 657 (2004).Google Scholar
Supplementary material: File

Hernandez-Suarez et al. supplementary material

Figures S1-S2

Download Hernandez-Suarez et al. supplementary material(File)
File 15.2 MB