Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T05:36:22.766Z Has data issue: false hasContentIssue false

Development of thermosensitive hybrid hydrogels based on xylan-type hemicellulose from agave bagasse: characterization and antibacterial activity

Published online by Cambridge University Press:  03 January 2020

L. Arellano-Sandoval
Affiliation:
Wood, Cellulose and Paper Research Department, University of Guadalajara, Guadalajara, Jalisco44100, México
E. Delgado
Affiliation:
Wood, Cellulose and Paper Research Department, University of Guadalajara, Guadalajara, Jalisco44100, México
T.A. Camacho-Villegas
Affiliation:
CONACYT — Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C (CIATEJ), Medical and Pharmaceutical Biotechnology, Guadalajara, Jalisco44270, México
J. Bravo-Madrigal
Affiliation:
Center for Research and Assistance in Technology and Design of the State of Jalisco, AC (CIATEJ), Guadalajara, Jalisco44270, México
R. Manríquez-González
Affiliation:
Wood, Cellulose and Paper Research Department, University of Guadalajara, Guadalajara, Jalisco44100, México
P.H. Lugo-Fabres
Affiliation:
CONACYT — Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C (CIATEJ), Medical and Pharmaceutical Biotechnology, Guadalajara, Jalisco44270, México
G. Toriz
Affiliation:
Wood, Cellulose and Paper Research Department, University of Guadalajara, Guadalajara, Jalisco44100, México Transdisciplinar Research Services Institute, University of Guadalajara, José Parres Arías 5, ZapopanJalisco, 45150, México
L. García-Uriostegui*
Affiliation:
CONACyT - Wood, Cellulose and Paper Research Department, University of Guadalajara, GuadalajaraJalisco, 44100, México
*
Address all correspondence to L. Garcia-Uriostegui at lorettauriostegui@gmail.com
Get access

Abstract

This work focuses on the functionalization of agave xylan-type hemicellulose functionalized with trimethoxysilylpropylmethacrylate and crosslinked with N-vinylcaprolactam to obtain a thermoresponsive material for potential applications in drug delivery. The hydrogels showed an interconnected and porous architecture with a lower critical solution temperature (LCST) close to poly(N-vinylcaprolactam)’s (PNVCL) LCST. These materials showed a good capacity to load ciprofloxacin (in the range 9.5 × 10−3–8.4 × 10−3 mg/mL), above the minimum inhibitory concentration (MIC ≤ 0.004 × 10−3–0.5 × 10−3 mg/mL) for gram-positive and gram-negative bacteria. The hybrid hydrogel inhibited the growth of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chimphango, A.F.A., van Zyl, W.H., and Görgens, J.F.: In situ enzymatic aided formation of xylan hydrogels and encapsulation of horse radish peroxidase for slow release. Carbohydr. Polym. 88, 1109 (2012).CrossRefGoogle Scholar
2.Gatenholm, P. and Tenkanen, M. (eds): Hemicelluloses: Science and Technology (American Chemical Society, Washington, D.C., 2003).CrossRefGoogle Scholar
3.Ebringerová, A., Hromádková, Z., and Heinze, T.: Hemicellulose. In Polysaccharides I: Structure, Characterization and Use, edited by Heinze, T. (Springer, Berlin/Heidelberg, 2005) pp. 167.Google Scholar
4.Markstedt, K., Håkansson, K., Toriz, G., and Gatenholm, P.: Materials from trees assembled by 3D printing — Wood tissue beyond nature limits. Appl. Mater. Today 15, 280 (2019).CrossRefGoogle Scholar
5.Consejo Regulador del Tequila Mexico: https://www.crt.org.mx/index.php/es/ (accessed August 30, 2019).Google Scholar
6.Li, H., Foston, M.B., Kumar, R., Samuel, R., Gao, X., Hu, F., Ragauskas, A.J., and Wyman, C.E.: Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv. 2, 4951 (2012).CrossRefGoogle Scholar
7.Li, X. and Pan, X.: Hydrogels based on hemicellulose and lignin from lignocellulose biorefinery: a mini-review. J. Biobased Mater. Bioenergy 4, 289 (2010).CrossRefGoogle Scholar
8.Kong, W.-Q., Gao, C.-D., Hu, S.-F., Ren, J.-L., Zhao, L.-H., and Sun, R.-C.: Xylan-modified-based hydrogels with temperature/pH dual sensitivity and controllable drug delivery behavior. Materials 10, 304 (2017).CrossRefGoogle Scholar
9.Venugopal, J., Rajeswari, R., Shayanti, M., Sridhar, R., Sundarrajan, S., Balamurugan, R., and Ramakrishna, S.: Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction. Mater. Sci. Eng. C 33, 1325 (2013).CrossRefGoogle ScholarPubMed
10.Dai, Q.-Q., Ren, J.-L., Peng, F., Chen, X.-F., Gao, C.-D., and Sun, R.-C.: Synthesis of acylated xylan-based magnetic Fe3O4 hydrogels and their application for H2O2 detection. Materials 9, 690 (2016).CrossRefGoogle Scholar
11.Kuzmenko, V., Hägg, D., Toriz, G., and Gatenholm, P.: In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydr. Polym. 102, 862 (2014).CrossRefGoogle ScholarPubMed
12.Gao, C., Ren, J., Zhao, C., Kong, W., Dai, Q., Chen, Q., Liu, C., and Sun, R.: Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr. Polym. 151, 189 (2016).CrossRefGoogle Scholar
13.Peng, X.-W., Ren, J.-L., Zhong, L.-X., and Sun, R.-C.: Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12, 3321 (2011).CrossRefGoogle ScholarPubMed
14.Taokaew, S., Phisalaphong, M., and Newby, B.-m.Z.: Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22, 2311 (2015).CrossRefGoogle ScholarPubMed
15.Bourges, X., Weiss, P., Daculsi, G., and Legeay, G.: Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv. Colloid Interface Sci. 99, 215 (2002).CrossRefGoogle ScholarPubMed
16.Roy, D., Cambre, J.N., and Sumerlin, B.S.: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278 (2010).CrossRefGoogle Scholar
17.Tang, S., Bhandari, R., Delaney, S.P., Munson, E.J., Dziubla, T.D., and Hilt, J.Z.: Synthesis and characterization of thermally responsive N-isopropylacrylamide hydrogels copolymerized with novel hydrophobic polyphenolic crosslinkers. Mater. Today Commun. 10, 46 (2017).CrossRefGoogle ScholarPubMed
18.Cruz, A., García-Uriostegui, L., Ortega, A., Isoshima, T., and Burillo, G.: Radiation grafting of N-vinylcaprolactam onto nano and macrogels of chitosan: synthesis and characterization. Carbohydr. Polym. 155, 303 (2017).CrossRefGoogle ScholarPubMed
19.Reid, G., Sharma, S., Advikolanu, K., Tieszer, C., Martin, R.A., and Bruce, A.W.: Effects of ciprofloxacin, norfloxacin, and ofloxacin on in vitro adhesion and survival of Pseudomonas aeruginosa AK1 on urinary catheters. Antimicrob. Agents Chemother. 38, 1490 (1994).CrossRefGoogle ScholarPubMed
20.Li, H.-Y., Sun, S.-N., Zhou, X., Peng, F., and Sun, R.-C.: Structural characterization of hemicelluloses and topochemical changes in Eucalyptus cell wall during alkali ethanol treatment. Carbohydr. Polym. 123, 17 (2015).CrossRefGoogle ScholarPubMed
21.Salon, M.C.B., Gerbaud, G., Abdelmouleh, M., Bruzzese, C., Boufi, S., and Belgacem, M.N.: Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Antimicrob. Agents Chemother. 45, 473 (2007).Google ScholarPubMed
22.Werner, K., Pommer, L., and Broström, M.: Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 110, 130 (2014).CrossRefGoogle Scholar
23.Varaprasad, K., Raghavendra, G.M., Jayaramudu, T., Yallapu, M.M., and Sadiku, R.: A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C 79, 958 (2017).CrossRefGoogle ScholarPubMed
24.Toh, W.S. and Loh, X.J.: Advances in hydrogel delivery systems for tissue regeneration. Mater. Sci. Eng. C 45, 690 (2014).CrossRefGoogle ScholarPubMed
25.Hu, S., Cai, X., Qu, X., Yu, B., Yan, C., Yang, J., Li, F., Zheng, Y., and Shi, X.: Preparation of biocompatible wound dressings with long-term antimicrobial activity through covalent bonding of antibiotic agents to natural polymers. Int. J. Biol. Macromol. 123, 1320 (2019).CrossRefGoogle ScholarPubMed
26.Wang, Y., Yao, L., Ren, T., and He, J.: Robust yet self-healing antifogging/antibacterial dual-functional composite films by a simple one-pot strategy. J. Colloid Interface Sci. 540, 107 (2019).CrossRefGoogle ScholarPubMed
Supplementary material: File

Arellano-Sandoval et al. supplementary material

Arellano-Sandoval et al. supplementary material

Download Arellano-Sandoval et al. supplementary material(File)
File 577.7 KB