Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T08:33:52.164Z Has data issue: false hasContentIssue false

The crystal structure of p-type transparent conductive oxide CuBO2

Published online by Cambridge University Press:  18 July 2013

Tiago F.T. Cerqueira
Affiliation:
Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex, France
Rafael Sarmiento-Pérez
Affiliation:
Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex, France
Fabio Trani
Affiliation:
Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Maximilian Amsler
Affiliation:
Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel, Switzerland
Stefan Goedecker
Affiliation:
Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel, Switzerland
Miguel A.L. Marques
Affiliation:
European Theoretical Spectroscopy Facility
Silvana Botti*
Affiliation:
European Theoretical Spectroscopy Facility
*
Address all correspondence to Silvana Botti atsilvana.botti@univ-lyon1.fr
Get access

Abstract

We employed ab initio global structural prediction algorithms to obtain the ground-state structure of CuBO2 This is a very promising p-type transparent conductive oxide that was synthesized recently, and thought to belong to the delafossite family. We proved that the true ground state is certainly not the delafossite structure, and that the most promising candidate is a low symmetry monoclinic phase. This is still a layered structure, but with boron and copper having a different coordination with respect to the delafossite phase.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., and Hosono, H.: P-type electrical conduction in transparent thin films of CuAlO2. Nature, 389, 939 (1997).CrossRefGoogle Scholar
2Thomas, G.: Invisible circuits. Nature, 389, 907 (1997).CrossRefGoogle Scholar
3Snure, M. and Tiwari, A.: A p-type transparent oxide CuBO2. Appl. Phys. Lett., 91, 092123 (2007).Google Scholar
4Scanlon, D., Walsh, A., and Watson, G.: Understanding the p-type conduction properties of the transparent conducting oxide CuBO2: a density functional theory analysis. Chem. Mater., 21, 4568 (2009).Google Scholar
5Heyd, J., Scuseria, G. E., and Ernzerhof, M.: Erratum: “Hybrid functionals based on a screened coulomb potential”. J. Chem. Phys., 124, 219906 (2006).Google Scholar
6Trani, F., Vidal, J., Botti, S., and Marques, M. A. L.: Band structures of delafossite transparent conductive oxides from a self-consistent GW approach. Phys. Rev. B, 82, 085115 (2010).CrossRefGoogle Scholar
7Vidal, J., Trani, F., Bruneval, F., Marques, M. A. L., and Botti, S.: Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides. Phys. Rev. Lett., 104, 136401 (2010).CrossRefGoogle ScholarPubMed
8Goedecker, S.: Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys., 120, 9911 (2004).Google Scholar
9Amsler, M. and Goedecker, S.: Crystal structure prediction using the minima hopping method. J. Chem. Phys., 133, 224104 (2010).CrossRefGoogle ScholarPubMed
10Flores-Livas, J. A., Amsler, M., Lenosky, T. J., Lehtovaara, L., Botti, S., Marques, M. A., and Goedecker, S.: High-pressure structures of disilane and their superconducting properties. Phys. Rev. Lett., 108, 117004 (2012).Google Scholar
11Amsler, M., Flores-Livas, J. A., Huan, T. D., Botti, S., Marques, M. A., and Goedecker, S.: Novel structural motifs in low energy phases of LiAlH4. Phys. Rev. Lett., 108, 205505 (2012).Google Scholar
12Botti, S., Flores-Livas, J. A., Amsler, M., Goedecker, S., and Marques, M. A. L.: Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications. Phys. Rev. B, 86, 121204(R) (2012).Google Scholar
13Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169 (1996).Google Scholar
14Perdew, J. P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865 (1996).Google Scholar
15Köhler, B. U. and Jansen, M.: Darstellung und strukturdaten von delafossiten CuMO2 (M = Al, Ga, Sc, Y). Z. Anorg. Allg. Chem., 543, 73 (1986).Google Scholar
16Arnold, T., Payne, D. J., Bourlange, A., Hu, J. P., Egdell, R. G., Piper, L. F. J., Colakerol, L., De Masi, A., Glans, P.-A., Learmonth, T., Smith, K. E., Guo, J., Scanlon, D. O., Walsh, A., Morgan, B. J., and Watson, G. W.: X-ray spectroscopic study of the electronic structure of CuCrO2. Phys. Rev. B, 79, 075102 (2009).Google Scholar
17Stokes, H. T. and Hatch, D. M.: J. Appl. Crystallogr., 38, 237 (2005).Google Scholar
18Ernzerhof, M. and Scuseria, G. E.: J. Chem. Phys., 110, 5029 (1999).CrossRefGoogle Scholar
19Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., and Sutton, A. P.: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B, 57, 1505 (1998).Google Scholar
20Pellicer-Porres, J., Segura, A., Gilliland, A., Munoz, A., Rodriguez-Hernendez, P., Kim, D., Lee, M., and Kim, T.: On the band gap of CuAlO2 delafossite. Appl. Phys. Lett., 88, 181904 (2006).Google Scholar
21Tate, J., Ju, H. L., Moon, J. C., Zakutayev, A., Richard, A. P., Russell, J., and McIntyre, D. H.: Origin of p-type conduction in single-crystal CuAlO2. Phys. Rev. B, 80, 165206 (2009).Google Scholar
22Scanlon, D. O. and Watson, G. W.: Conductivity limits in CuAlO2 from screened-hybrid density functional theory. J. Chem. Phys. Lett., 1, 3125 (2010).Google Scholar
23Nie, X., Wei, S., and Zhang, S.: Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. Phys. Rev. Lett., 88, 066405 (2002).CrossRefGoogle ScholarPubMed
24Scanlon, D. O., Godinho, K. G., Morgan, B. J., and Watson, G. W.: Understanding conductivity anomalies in Cu-based delafossite transparent conducting oxides: theoretical insights. J. Chem. Phys., 132, 024707 (2010).Google Scholar
25Santra, S., Das, N.S., and Chattopadhyay, K.K.: Sol–gel synthesis and characterization of wideband gap p-type nanocrystalline CuBO2. Mater. Lett., 92, 198 (2013).CrossRefGoogle Scholar
26Botti, S. and Marques, M.A.L.: Phys. Rev. Lett., 110, 226404 (2013).Google Scholar