Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T16:17:51.190Z Has data issue: false hasContentIssue false

Zn-enriched PtZn nanoparticle electrocatalysts synthesized by solution combustion for ethanol oxidation reaction in an alkaline medium

Published online by Cambridge University Press:  17 April 2018

Md. Abdul Matin
Affiliation:
Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
Anand Kumar*
Affiliation:
Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
Mohammed Ali H. Saleh Saad
Affiliation:
Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
Mohammed J. Al-Marri
Affiliation:
Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
Sergey Suslov
Affiliation:
Qatar Environmental and Energy Research Institute (QEERI), HBKU, Qatar Foundation, Doha, Qatar
*
Address all correspondence to Anand Kumar at akumar@qu.edu.qa
Get access

Abstract

This work focuses on the syntheses of Zn-enriched PtZn nanoparticle electrocatalysts by solution combustion for ethanol oxidation reaction (EOR). Analytical techniques of x-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy, TEM/scanning TEM-energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy are used for the characterization of electrocatalysts. Cyclic voltammetry and chronoamperometry are applied for the electrocatalysis of C2H5OH and stability test in an alkaline medium, respectively. Electrochemical data show that PtZn/C has improved electrocatalytic activity by ~2.3 times compared with commercial Pt/C, in addition to having earlier onset potential and better stability for EOR. The variation of fuel amount in the synthesis has affected crystallite sizes, electronic, and electrochemical properties in electrocatalysts.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Porter, N.S., Wu, H., Quan, Z., and Fang, J.: Shape-control and electrochemical activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 8, 18671877 (2003).Google Scholar
2.Ogden, M.: Sustainable energy supply. In Handbook of Fuel Cells: Fundamentals Technology and Applications, edited by Vielstich, W., Lamn, A., and Gasteiger, H., pp. 1–8 (John Willey & Sons Ltd., 3, Chichester, 2003).Google Scholar
3.Rizo, R., Sebastian, D., Lazaro, M.J., and Pastor, E.: On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B Environ. 200, 246254 (2017).CrossRefGoogle Scholar
4.Zhong, C., Luo, J., Fang, B., Wanjala, B.N., Njoki, P.N., Loukrakpam, R., and Yin, J.: Nanostructured catalysts in fuel cells. Nanotechnology 21, 062001062020 (2010).Google Scholar
5.Yang, G., Zhou, Y., Pan, H., Zhou, C., Fu, S., Wai, C.M., Du, D., Zhu, J., and Lin, Y.: Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason. Sonochem. 28, 192198 (2016).Google Scholar
6.Shen, S.Y., Zhao, T.S., Xu, J.B., and Li, Y.S.: Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 195, 10011006 (2010).CrossRefGoogle Scholar
7.Zai, C., Hu, J., Sun, M., and Zhu, M.: Two dimensional visible-light-active Pt-BioI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media. Appl. Surf. Sci. 430, 578584 (2017).Google Scholar
8.Zhang, K., Xu, H., Yan, B., Wang, J., Gu, Z., and Du, Y.: Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation. Appl. Surf. Sci. 425, 7782 (2017).Google Scholar
9.Matin, M.A., Lee, E., Kim, H., Yoon, W.-Y., and Kwon, Y.-U.: Rational syntheses of core-shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity. J. Mater. Chem. A 3, 1715417164 (2015).Google Scholar
10.Mukherjee, P., Bagchi, J., Dutta, S., and Battacharya, S.K.: The nickel supported platinum catalyst for anodic oxidation of ethanol in alkaline medium. Appl. Catal. A Gen. 506, 220227 (2015).CrossRefGoogle Scholar
11.Switzer, E.E., Olson, T.S., Datye, A.K., Atanassov, P., Hibbs, M.R., and Cornelius, C.J.: Templated Pt-Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochim. Acta 54, 989995 (2009).Google Scholar
12.Wang, X., Altmann, L., Stover, J., Zielasek, V., Baumer, M., Katharina, A.-S., Borchert, H., Parisi, J., and Joanna, K.-O.: Pt/Zn intermetallic, core/shell and alloy nanoparticles: colloidal synthesis and structural control. Chem. Mater. 25, 14001407 (2013).Google Scholar
13.Maya-Cornejo, J., Carrerra-Cerritos, R., Sebastian, D., Ledesma-Garcia, L., Arriaga, L.G., Arico, A.S., and Baglio, V.: PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. Int. J. Hydrog. Energy 42, 2791927928 (2017).CrossRefGoogle Scholar
14.Jin, C., Ma, X., Zhang, J., Huo, O., and Dong, R.: Surface modification of Pt/C catalyst with Ag for electrooxidation of ethanol. Electrochim. Acta 146, 533537 (2014).Google Scholar
15.Gregoire, J.M., Kostylev, M., Tague, M.E., Mutolo, P.F., van Dover, R.B., DiSalvo, F.J., and Abruna, H.D.: High-throughput evaluation of dealloyed Pt-Zn composition-spread thin film for methanol-oxidation catalysis. J. Electrochem. Soc. 156, B160B166 (2009).Google Scholar
16.Zhu, J., Zheng, X., Wang, J., Wu, Z., Han, L., Lin, R., Xin, H.L., and Wang, D.: Structurally ordered Pt-Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. J. Mater. Chem. A 3, 2212922135 (2015).Google Scholar
17.Miura, A., Wang, H., Leonard, B.M., Abruna, H.D., and DiSalvo, F.J.: Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem. Mater. 21, 26612667 (2009).Google Scholar
18.Qi, Z., Xiao, C., Liu, C., Goh, T. W., Zhou, L., Maligal-Ganesh, R., Pei, Y., Li, X., Curtiss, L. A., and Huang, W.: Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 139, 47624768 (2017).Google Scholar
19.Kang, Y., Pyo, J.B., Ye, X., Gordon, T.R., and Murray, C.B.: Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 6, 56425647 (2012).Google Scholar
20.Sasaki, H. and Maeda, M.: Enhanced dissolution of Pt from Pt-Zn intermetallic compounds and underpotential dissolution from Zn-rich alloys. J. Phys. Chem. C 117, 1845718463 (2013).Google Scholar
21.Chen, Q., Zhang, J., Jia, Y., Jiang, Z., Xie, Z., and Zheng, L.: Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 6, 70197024 (2014).Google Scholar
22.Moser, Z.: The Pt-Zn (platinum-zinc) system. J. Phase Equilib. 12, 439443 (1991).Google Scholar
23.Kottcamp, E.H. and Langer, E.L.: Binary alloy phase diagrams. In ASM Handbook: Alloy Phase Diagrams, edited by Okamoto, H., Schlesinger, M.E., and Mueller, E.M., pp. 79624 (3, 1992).Google Scholar
24.Nowotny, H., Bauer, E., Stempfl, A., and Bittner, H.: Platinum-zinc alloy phase diagram [based on 1952 H. Nowotny]. Monatsh. Chem. 83, 221236 (1952).Google Scholar
25.Hansen, M., Anderko, K., and Saizberg, H.W.: Constitution of binary alloys. J. Electrochem. Soc. 105, 260C261C (1958).Google Scholar
26.Chen, Z.-X., Neyman, K.M., Gordienko, A.B., and Rosch, N.: Surface structure and stability of PdZn and PtZn alloys: density-functional slab model studies. Phys. Rev. B 68, 075417-8 (2003).Google Scholar
27.Hsieh, C.-T., Hung, W.-M., Chen, W.-Y., and Lin, J.-Y.: Microwave-assisted polyol synthesis of Pt-Zn electrocatalysts on carbon nanotube electrodes for methanol oxidation. Int. J. Hydrog. Energy 36, 27652772 (2011).Google Scholar
28.Ito, S.-I., Suwa, Y., Kondo, S., Kameoka, S., Tomishige, K., and Kunimori, K.: Steam reforming of methanol over Pt-Zn alloy catalyst supported on carbon black. Catal. Commun. 4, 499503 (2003).Google Scholar
29.Pech-Rodriguez, W.J., Gonzalez-Quijano, D., Vargas-Gutierrez, G., Morais, C., Napporn, T.W., and Rodriguez-Varela, F.J.: Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl. Catal. B Environ. 203, 654662 (2017).Google Scholar
30.Matin, M.A., Kumar, A., Bhosale, R.R., Saad, M.A.H.S., Almomani, F.A., and Al-Marri, M.J.: PdZn nanoparticle electrocatalysts synthesized by solution combustion for methanol oxidation reaction in an alkaline medium. RSC Adv. 7, 4270942717 (2017).Google Scholar
31.Matin, M.A., Jang, J.-H., and Kwon, Y.-U.: PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J. Power Sources 262, 356–263 (2014).Google Scholar
32.Qiao, Y. and Li, C.M.: Nanostructured catalysts in fuel cells. J. Mater. Chem. 21, 40274036 (2011).Google Scholar
33.Merzhanov, A.G.: History and recent developments in SHS. Ceram. Int. 21, 371379 (1995).Google Scholar
34.Kingsley, J. and Patil, K.C.: A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6, 427432 (1988).Google Scholar
35.Cross, A., Kumar, A., Wolf, E.E., and Mukasyan, A.S.: Combustion synthesis of a nickel supported catalyst: effect of metal distribution on the activity during ethanol decomposition. Ind. Eng. Chem. Res. 51, 1200412008 (2012).Google Scholar
36.Kumar, A., Mukasyan, A.S., and Wolf, E.E.: Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming. Appl. Catal. A Gen. 401, 2028 (2011).Google Scholar
37.Aruna, S.T. and Mukasyan, A.S.: Combustion synthesis and nanomaterials. Curr. Opin. Sold State Mater. Sci. 12, 4450 (2008).Google Scholar
38.Lenka, R.K., Mahata, T., Sinha, P.K., and Tyagi, A.K.: Combustion synthesis of gadolina-doped ceria using glycine and urea fuels. J. Alloys Compd. 466, 326329 (2008).Google Scholar
39.Gonzalez-Cortes, S.L. and Imbert, F.E.: Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen. 452, 117131 (2013).Google Scholar
40.Li, F.-T., Ran, J., Jaroniec, M., and Qiao, S.Z.: Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7, 1759017610 (2015).Google Scholar
41.Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V.: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 1449314586 (2016).Google Scholar
42.Zak, A.K., Majid, W.H.A., Abrishami, M.E., and Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251256 (2011).Google Scholar
43.Kim, Y.-T., Matin, M.A., and Kwon, Y.-U.: Graphene as electronic structure modifier of nanostructured Pt film for enhanced methanol oxidation reaction electrocatalysis. Carbon N. Y. 66, 691698 (2014).Google Scholar
44.Biesinger, M.C., Lau, L.W.M., Gerson, A.R., and Smart, R.St.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, Cu and Zn. Appl. Surf. Sci. 257, 887898 (2010).Google Scholar
45.Hammer, B. and Norskov, J.K.: Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71129 (2000).Google Scholar
46.Kibler, L.A., El-Aziz, A.M., Hoyer, R., and Kolb, D.M.: Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44, 20802084 (2005).Google Scholar
47.Zhang, Z., Ge, J., Ma, L., Liao, J., Lu, T., and Xing, W.: Highly active carbon-supported PdSn catalysts for formic acid electrooxidation. Fuel Cells 9, 114120 (2009).Google Scholar
48.Zhang, L., Wan, L., Ma, Y., Chen, Y., Zhou, Y., Tang, Y., and Lu, T.: Crystalline palladium-cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl. Catal. B Environ. 138–139, 229235 (2013).Google Scholar
49.Wang, J.X., Markovic, N.M., and Adzic, R.R.: Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B 108, 41274133 (2004).Google Scholar
50.Wang, J.X., Zhang, J.L., and Adzic, R.R.: Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. J. Phys. Chem. A 111, 1270212710 (2007).Google Scholar
51.Igarashi, H., Fujino, T., Zhu, Y., Uchida, H., and Watanabe, M.: CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys. Chem. Chem. Phys. 3, 306314 (2001).CrossRefGoogle Scholar
52.Feng, Y., Bin, D., Yan, B., Du, Y., Majima, T., and Zhou, W.: Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation. J. Colloid Interface Sci. 493, 190197 (2017).Google Scholar
53.Chen, X., Cai, Z., Chen, X., and Oyama, M.: Green synthesis of graphene-PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation. J. Mater. Chem. A 2, 315320 (2014).Google Scholar
Supplementary material: File

Matin et al. supplementary material

Tables S1-S2 and Figures S1-S3

Download Matin et al. supplementary material(File)
File 4.5 MB