Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T08:36:14.712Z Has data issue: false hasContentIssue false

Water-dispersible near-infrared luminescent silicon nanocrystals –immobilization on substrate

Published online by Cambridge University Press:  07 November 2016

Takashi Kanno
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Shinya Kano*
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Hiroshi Sugimoto
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Yasuhiro Tada
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Minoru Fujii*
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
*
Address all correspondence to S. Kano at kano@eedept.kobe-u.ac.jp and M. Fujii at fujii@eedept.kobe-u.ac.jp
Address all correspondence to S. Kano at kano@eedept.kobe-u.ac.jp and M. Fujii at fujii@eedept.kobe-u.ac.jp
Get access

Abstract

We demonstrate formation of allylamine (AAm) and acrylic acid (AAc)-functionalized colloidal silicon nanocrystals (Si NCs) exhibiting near-infrared (NIR) luminescence and immobilization of the NCs on substrates via covalent bond. The surface functionalization is confirmed by IR absorption spectroscopy and specific binding property of functionalized NCs. Atomic force microscope observations reveal that AAm- and AAc-functionalized Si NCs are chemically immobilized on self-assembled monolayers via covalent bonds. The functionalized Si NCs exhibit photoluminescence in a NIR region (1.5–1.6 eV), which is not significantly affected by the functionalization.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47 (2004).CrossRefGoogle ScholarPubMed
2. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538 (2005).Google Scholar
3. Tsoi, K.M., Dai, Q., Alman, B.A., and Chan, W.C.W.: Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 46, 662 (2012).Google Scholar
4. Bhattacharjee, S., Rietjens, I.M.C.M., Singh, M.P., Atkins, T.M., Purkait, T.K., Xu, Z., Regli, S., Shukaliak, A., Clark, R.J., Mitchell, B.S., Alink, G.M., Marcelis, A.T.M., Fink, M.J., Veinot, J.G.C., Kauzlarich, S.M., and Zuilhof, H.: Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale 5, 4870 (2013).Google Scholar
5. Rosso-Vasic, M., Spruijt, E., Popovic, Z., Overgaag, K., van Lagen, B., Grandidier, B., Vanmaekelbergh, D., Dominguez-Gutierrez, D., De Cola, L., and Zuilhof, H.: Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging. J. Mater. Chem. 19, 5926 (2009).Google Scholar
6. Warner, J.H., Hoshino, A., Yamamoto, K., and Tilley, R.D.: Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. 44, 4550 (2005).Google Scholar
7. He, Y., Su, Y., Yang, X., Kang, Z., Xu, T., Zhang, R., Fan, C., and Lee, S.-T.: Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J. Am. Chem. Soc. 131, 4434 (2009).Google Scholar
8. Yu, Y., Hessel, C.M., Bogart, T.D., Panthani, M.G., Rasch, M.R., and Korgel, B.A.: Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes. Langmuir 29, 1533 (2013).Google Scholar
9. Xu, Z., Li, Y., Zhang, B., Purkait, T., Alb, A., Mitchell, B.S., Grayson, S.M., and Fink, M.J.: Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates. J. Nanopart. Res. 17, 56 (2015).CrossRefGoogle Scholar
10. Erogbogbo, F., Yong, K., Roy, I., Xu, G., Prasad, P.N., and Swihart, M.T.: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).Google Scholar
11. Pi, X., Yu, T., Yang, D.: Water-dispersible silicon-quantum-dot-containing micelles self-assembled from an amphiphilic polymer. Part. Part. Syst. Charact. 31, 751 (2014).Google Scholar
12. Sugimoto, H., Fujii, M., Imakita, K., Hayashi, S., and Akamatsu, K.: All-inorganic near-infrared luminescent colloidal silicon nanocrystals: high dispersibility in polar liquid by phosphorus and boron codoping. J. Phys. Chem. C 116, 17969 (2012).Google Scholar
13. Sugimoto, H., Fujii, M., Imakita, K., Hayashi, S., and Akamatsu, K.: Codoping n-and p-type impurities in colloidal silicon nanocrystals-controlling luminescence energy from below bulk band gap to visible range. J. Phys. Chem. C 117, 11850 (2013).Google Scholar
14. Sugimoto, H., Fujii, M., Fukuda, Y., Imakita, K., and Akamatsu, K.: All-inorganic water-dispersible silicon quantum dots: highly efficient near-infrared luminescence in a wide pH range. Nanoscale 6, 122 (2014).Google Scholar
15. Fujii, M., Sugimoto, H., and Imakita, K.: All-inorganic colloidal silicon nanocrystals—surface modification by boron and phosphorus co-doping. Nanotechnology 27, 262001 (2016).Google Scholar
16. Zhang, N., Chittasupho, C., Duangrat, C., Siahaan, T.J., and Berkland, C.: PLGA nanoparticle-peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug. Chem. 19, 145 (2008).Google Scholar
17. Xing, Y., Chaudry, Q., Shen, C., Kong, K.Y., Zhau, H.E., Chung, L.W., Petros, J.A., O'Regan, R.M., Yezhelyev, M.V., Simons, J.W., Wang, M.D., and Nie, S.: Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152 (2007).Google Scholar
18. Kolb, H.C., Finn, M.G., and Sharpless, K.B.: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004 (2001).Google Scholar
19. Dasog, M., De Los Reyes, G.B., Titova, L.V., Hegmann, F.A., and Veinot, J.G.C.: Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8, 9636 (2014).Google Scholar
20. Tenney, A.S.: Nondestructive determination of the composition and thickness of thin films of pyrolytically deposited borosilicate glass by infrared absorption. J. Electrochem. Soc. 118, 1658 (1971).Google Scholar
21. Kaneko, T., Nemoto, D., Horiguchi, A., and Miyakawa, N.: FTIR analysis of a-SiC:H films grown by plasma enhanced CVD. J. Cryst. Growth 275, 1097 (2005).Google Scholar
22. Mukhopadhyay, S. and Ray, S.: Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method: optical and structural properties. Appl. Surf. Sci. 257, 9717 (2011).Google Scholar
23. Kamra, T., Chaudhary, S., Xu, C., Johansson, N., Montelius, L., Schnadt, J., and Ye, L.: Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane. J. Colloid Interface Sci. 445, 277 (2015).Google Scholar
24. Allen, G.C., Sorbello, F., Altavilla, C., Castorina, A., and Ciliberto, E.: Macro-, micro- and nano-investigations on 3-aminopropyltrimethoxysilane self-assembly-monolayers. Thin Solid Films 483, 306 (2005).CrossRefGoogle Scholar
25. Yang, C., Bley, R.A., Kauzlarich, S.M., Lee, H.W.H., and Delgado, G.R.: Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121, 5191 (1999).CrossRefGoogle Scholar
26. Yang, Z., De Los Reyes, G.B., Titova, L.V., Sychugov, I., Dasog, M., Linnros, J., Hegmann, F.A., and Veinot, J.G.C.: Evolution of the ultrafast photoluminescence of colloidal silicon Nanocrystals with changing surface chemistry. ACS Photonics 2, 595 (2015).Google Scholar
27. Yu, Y. and Korgel, B.A.: Controlled styrene monolayer capping of silicon nanocrystals by room temperature hydrosilylation. Langmuir 31, 6532 (2015).Google Scholar
28. De los Reyes, G.B., Dasog, M., Na, M., Titova, L.V., Veinot, J.G.C., and Hegmann, F.A.: Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. Phys. Chem. Chem. Phys. 17, 30125 (2015).Google Scholar
29. Warner, J.H., Rubinsztein-Dunlop, H., and Tilley, R.D.: Surface morphology dependent photoluminescence from colloidal silicon nanocrystals. J. Phys. Chem. B 109, 19064 (2005).Google Scholar
30. Liu, X., Zhang, Y., Yu, T., Qiao, X., Gresback, R., Pi, X., and Yang, D.: Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots. Part. Part. Syst. Charact. 33, 44 (2016).Google Scholar
Supplementary material: File

Kanno supplementary material

Fig. S1-S4

Download Kanno supplementary material(File)
File 157.7 KB