Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-30T12:04:17.954Z Has data issue: false hasContentIssue false

Synergistic thermoelectric power factor increase in films incorporating tellurium and thiophene-based semiconductors

Published online by Cambridge University Press:  03 April 2013

Jasmine Sinha
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218
Robert M. Ireland
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218
Stephen J. Lee
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218
Howard E. Katz*
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218
*
*Address all correspondence to Howard E. Katz at hekatz@jhu.edu
Get access

Abstract

Two thiophene-based semiconductors, a vapor-deposited small molecule and an amorphous polymer, as well as pentacene for comparison, show potential in enhancing the thermoelectric properties of tellurium (Te) nanowires. For vapor-deposited films, Te nanostructures form directly on glass substrates or organic semiconductor films. The resulting Te power factor (S2σ) was enhanced from 36 to 45 W/mK2 (56 for pentacene) because the bilayer provides an enhancement in Seebeck (S) without compromising conductivity (σ). For solution deposited polymer blends, we obtained power factors from a Te nanowire network that alone would not have sufficient connectivity (up to 0.1 µW/mK2). While the organics are unoptimized, they are prototypical materials for further development.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wang, Y.Y., Cai, K.F., and Yao, X.: One-pot fabrication and enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene)-Bi2S3 nanocomposites. J. Nanopart. Res. 14, 848 (2012).Google Scholar
2.Du, Y., Cai, K.F.F., Shen, S.Z., An, B.J., Qin, Z., and Casey, P.S.: Influence of sintering temperature on thermoelectric properties of Bi2Te3/polythiophene composite materials. J. Mater. Sci. – Mater. Electron. 23, 870 (2012).Google Scholar
3.Toshima, N., Imai, M. and Ichikawa, S.: Organic-inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth(III) telluride nanoparticles. J. Electron. Mater. 40, 898 (2011).CrossRefGoogle Scholar
4.Zhang, B., Sun, J., Katz, H.E., Fang, F., and Opila, R.L.: Promising thermoelectric properties of commercial pEDOT:PSS materials and their Bi(2)Te(3) powder composites. ACS Appl. Mater. Interfaces 2, 3170 (2010).Google Scholar
5.Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., and Chen, G.: Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147 (2012).Google Scholar
6.Lan, Y.C., Minnich, A.J., Chen, G., and Ren, Z.F.: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357 (2010).Google Scholar
7.Poehler, T.O. and Katz, H.E.: Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ. Sci. 5, 8110 (2012).Google Scholar
8.Luo, L.B., Liang, F.X., Huang, X.L., Yan, T.X., Hu, J.G., Yu, Y.Q., Wu, C.Y., Wang, L., Zhu, Z.F., Li, Q., and Jie, J.S.: Tailoring the electrical properties of tellurium nanowires via surface charge transfer doping. J. Nanopart. Res. 14, 967 (2012).Google Scholar
9.Tao, H., Liu, H.M., Qin, D.H., Chan, K., Chen, J.W., and Cao, Y.: High mobility field effect transistor from solution-processed needle-like tellurium nanowires. J. Nanosci. Nanotechnol. 10, 7997 (2010).Google Scholar
10.Zaiour, A., Zahraman, K., Roumie, M., Charara, J., Fawaz, A., Lmai, F., and Hage-Ali, M.: Purification of tellurium to nearly 7N purity. Mater. Sci. Eng., B 131, 54 (2006).Google Scholar
11.See, K.C., Feser, J.P., Chen, C.E., Majumdar, A., Urban, J.J., and Segalman, R.A.: Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett. 10, 4664 (2010).Google Scholar
12.Bodiul, P., Bondarchuk, N., Huber, T., Konopko, L., Nikolaeva, A., Botnari, O.: Thermoelectric Properties of Films and Monocrystalline Whiskers of Tellurium 607, (IEEE, Vienna, 2006).Google Scholar
13.Cartwright, C.H.: The Wiedemann-Franz number, heat conductivity and the thermoelectric power of tellurium. Ann. Phys. 18, 656 (1933).Google Scholar
14.Chaudhuri, S., Chakrabarti, B., and Pal, A.K.: Thermoelectric-power of tellurium-films. Thin Solid Films 82, 217 (1981).CrossRefGoogle Scholar
15.Ramasesha, S.K. and Singh, A.K.: Thermoelectric-power of tellurium under pressure up to 8-GPA. Philos. Mag. B 64, 559 (1991).CrossRefGoogle Scholar
16.Sharma, A.K.: Thickness dependence of the thermoelectric-power of tellurium-films. Phys. Status Solidi A. 77, K81 (1983).CrossRefGoogle Scholar
17.Lee, J., Jung, J.Y., Kim, D.H., Kim, J.Y., Lee, B.L., Park, J.I., Chung, J.W., Park, J.S., Koo, B., Jin, Y.W., and Lee, S.: Enhanced electrical stability of organic thin-film transistors with polymer semiconductor-insulator blended active layers. Appl. Phys. Lett. 100, 083302 (2012).Google Scholar
18.Huang, J., Hines, D.R., Jung, B.J., Bronsgeest, M.S., Tunnell, A., Ballarotto, V., Katz, H.E., Fuhrer, M.S., Williams, E.D., and Cumings, J.: Polymeric semiconductor/graphene hybrid field-effect transistors. Org. Electron. 12, 1471 (2011).CrossRefGoogle Scholar
19.Yuen, A.P., Preston, J.S., Hor, A.M., Klenkler, R., Macabebe, E.Q.B., van Dyk, E.E., and Loutfy, R.O.: Blend composition study of poly(3,3'-didodecylquaterthiophene)/ 6,6-phenyl C-61 butyric acid methyl ester solution processed organic solar cells. J. Appl. Phys. 105, 016105 (2009).CrossRefGoogle Scholar
20.Ong, B.S., Wu, Y.L., Liu, P., and Gardner, S.: Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors. Adv. Mater. 17, 1141 (2005).CrossRefGoogle Scholar
21.Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H.E., and Marks, T.J.: Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. J. Am. Chem. Soc. 125, 9414 (2003).Google Scholar
22.Ma, J.M., Liu, X.D., Wu, L.Y., and Zheng, W.J.: A solvothermal route to tellurium based thin films. Cryst. Res. Technol. 43, 1297 (2008).CrossRefGoogle Scholar
23.Ireland, R.M., Zhang, L., Gopalan, P., and Katz, H.E.: Tellurium thin films in hybrid organic electronics: morphology and mobility. Adv. Mater. (2012) (DOI: 10.1002/adma.201203647).Google Scholar
24.Ireland, R.M., Dawidczyk, T., Cottingham, P., McQueen, T., Johns, G., Markovic, N., Zhang, L., Gopalan, P., and Katz, H.E.: Effects of pulsing and interfacial potentials on tellurium-organic heterostructured films. ACS Appl. Mater. Interfaces 5, 1604 (2013).CrossRefGoogle ScholarPubMed
25.Sinha, J., Lee, S.J., Kong, H., Swift, T.W. and Katz, H.E.: Tetrathiafulvalene (TTF)-functionalized Thiophene copolymerized with 3, 3′′′-didodecylquaterthiophene: synthesis, TTF trapping activity, and response to trinitrotoluene. Macromolecules 46, 708 (2013).Google Scholar
Supplementary material: PDF

Sinha et al. supplementary material

Supplementary figures

Download Sinha et al. supplementary material(PDF)
PDF 741.1 KB