Hostname: page-component-7d684dbfc8-jcwnr Total loading time: 0 Render date: 2023-09-30T17:51:10.068Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Structural, optical, and hole transport properties of earth-abundant chalcopyrite (CuFeS2) nanocrystals

Published online by Cambridge University Press:  04 July 2018

Ebin Bastola
Department of Physics and Astronomy, The Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, USA
Khagendra P. Bhandari
Department of Physics and Astronomy, The Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, USA
Indra Subedi
Department of Physics and Astronomy, The Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, USA
Nikolas J. Podraza
Department of Physics and Astronomy, The Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, USA
Randy J. Ellingson*
Department of Physics and Astronomy, The Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, USA
Address all correspondence to Randy J. Ellingson at
Get access


Here, we report thiol-free thermal-injection synthesis of chalcopyrite (CuFeS2) nanocrystals (NCs) using iron (II) bromide (FeBr2), copper (II) acetaylacetonate (Cu(acac)2), and elemental sulfur (S). Controlled reaction temperature and growth time yield stable and phase-pure ternary CuFeS2 NCs exhibiting tetragonal crystal structure. With increasing growth time from 1 to 30 min, absorption peak slightly red shifts from 465 to 490 nm. Based on spectroscopic ellipsometry analysis, three electronic transitions at 0.652, 1.54, and 2.29 eV were found for CuFeS2 NC film. Also, CuFeS2 NC thin films are incorporated as hole transport layers in cadmium telluride solar cells reaching an efficiency of ~12%.

Research Letters
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Kambara, T.: Optical Properties of a magnetic semiconductor: chalcopyrite CuFeS2 II. Calculated electronic structures of CuGaS2:Fe and CuFeS2. J. Phys. Soc. Jpn. 36, 1625 (1974).CrossRefGoogle Scholar
2.Conejeros, S., Alemany, P., Llunell, M., Moreira, I.D.P.R., Sánchez, V.C., and Llanos, J.: Electronic structure and magnetic properties of CuFeS2. Inorg. Chem. 54, 4840 (2015).CrossRefGoogle ScholarPubMed
3.Liang, D., Ma, R., Jiao, S., Pang, G., and Feng, S.: A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance. Nanoscale 4, 6265 (2012).CrossRefGoogle ScholarPubMed
4.Li, J., Tan, Q., and Li, J.-F.: Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials. J. Alloys. Compd. 551, 143 (2013).CrossRefGoogle Scholar
5.Wu, Y., Zhou, B., Yang, C., Liao, S., Zhang, W.-H., and Li, C.: CuFeS2 colloidal nanocrystals as an efficient electrocatalyst for dye sensitized solar cells. Chem. Commun. 52, 11488 (2016).CrossRefGoogle ScholarPubMed
6.Ghosh, S., Avellini, T., Petrelli, A., Kriegel, I., Gaspari, R., Almeida, G., Bertoni, G., Cavalli, A., Scotognella, F., Pellegrino, T., and Manna, L.: Colloidal CuFeS2 nanocrystals: intermediate Fe d-band leads to high photothermal conversion efficiency. Chem. Mater. 28, 4848 (2016).CrossRefGoogle ScholarPubMed
7.Aldakov, D., Lefrancois, A., and Reiss, P.: Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756 (2013).CrossRefGoogle Scholar
8.Wang, M. X., Wang, L. S., Yue, G. H., Wang, X., Yan, P. X., and Peng, D. L.: Single crystal of CuFeS2 nanowires synthesized through solventothermal process. Mater. Chem. Phys. 115, 147 (2009).CrossRefGoogle Scholar
9.Silvester, E. J., Healy, T. W., Grieser, F., and Sexton, B. A.: Hydrothermal preparation and characterization of optically transparent colloidal chalcopyrite (CuFeS2). Langmuir 7, 19 (1991).CrossRefGoogle Scholar
10.Pradhan, S. K., Ghosh, B., and Samanta, L. K.: Mechanosynthesis of nanocrystalline chalcopyrite. Phys. E. 33, 144 (2006).CrossRefGoogle Scholar
11.Wang, Y.-H. A., Bao, N., and Gupta, A.: Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals. Solid State Sci. 12, 387 (2010).CrossRefGoogle Scholar
12.Kumar, P., Uma, S., and Nagarajan, R.: Precursor driven one pot synthesis of wurtzite and chalcopyrite CuFeS2. Chem. Commun. 49, 7316 (2013).CrossRefGoogle ScholarPubMed
13.Gabka, G., Bujak, P., Żukrowski, J., Zabost, D., Kotwica, K., Malinowska, K., Ostrowski, A., Wielgus, I., Lisowski, W., and Sobczak, J. W.: Non-injection synthesis of monodisperse Cu–Fe–S nanocrystals and their size dependent properties. Phys. Chem. Chem. Phys. 18, 15091 (2016).CrossRefGoogle ScholarPubMed
14.Bhandari, K. P., Roland, P. J., Kinner, T., Cao, Y., Choi, H., Jeong, S., and Ellingson, R. J.: Analysis and characterization of iron pyrite nanocrystals and nanocrystalline thin films derived from bromide anion synthesis. J. Mater. Chem. A 3, 6853 (2015).CrossRefGoogle Scholar
15.Kinner, T., Bhandari, K. P., Bastola, E., Monahan, B. M., Haugen, N. O., Roland, P. J., Bigioni, T. P., and Ellingson, R. J.: Majority Carrier Type Control of Cobalt Iron Sulfide (CoxFe1–xS2) Pyrite Nanocrystals. J. Phys. Chem. C 120, 5706 (2016).CrossRefGoogle Scholar
16.Bhattacharyya, B. and Pandey, A.: CuFeS2 quantum dots and highly luminescent CuFeS2 based core/shell structures: synthesis, tunability, and photophysics. J. Am. Chem. Soc. 138, 10207 (2016).CrossRefGoogle ScholarPubMed
17.Bhandari, K. P., Koirala, P., Paudel, N. R., Khanal, R. R., Phillips, A. B., Yan, Y., Collins, R. W., Heben, M. J., and Ellingson, R. J.: Iron pyrite nanocrystal film serves as a copper-free back contact for polycrystalline CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells 140, 108 (2015).CrossRefGoogle Scholar
18.Huckaba, A. J., Sanghyun, P., Grancini, G., Bastola, E., Taek, C. K., Younghui, L., Bhandari, K. P., Ballif, C., Ellingson, R. J., and Nazeeruddin, M. K.: Exceedingly cheap perovskite solar cells using iron pyrite hole transport materials. Chemistryselect 1, 5316 (2016).CrossRefGoogle Scholar
19.Bastola, E., Bhandari, K. P., and Ellingson, R. J.: Application of composition controlled nickel-alloyed iron sulfide pyrite nanocrystal thin films as the hole transport layer in cadmium telluride solar cells. J. Mater. Chem. C 5, 4996 (2017).CrossRefGoogle Scholar
20.Bastola, E., Subedi, K. K., Bhandari, K. P., and Ellingson, R. J.: Solution-processed nanocrystal based thin films as hole transport materials in cadmium telluride photovoltaics. MRS Adv. 1 (2018). doi: 10.1557/adv.2018.349.CrossRefGoogle Scholar
21.Freeouf, J. L. and Woodall, J. M.: Schottky barriers: an effective work function model. Appl. Phys. Lett. 39, 727 (1981).CrossRefGoogle Scholar
22.Jaffe, J. and Zunger, A.: Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2. Phys. Rev. B 28, 5822 (1983).CrossRefGoogle Scholar
23.Oguchi, T., Sato, K., and Teranishi, T.: Optical reflectivity spectrum of a CuFeS2 single crystal. J. Phys. Soc. Jpn. 48, 123 (1980).CrossRefGoogle Scholar
24.Hamajima, T., Kambara, T., Gondaira, K. I., and Oguchi, T.: Self-consistent electronic structures of magnetic semiconductors by a discrete variational Xα calculation. III. Chalcopyrite CuFeS2. Phys. Rev. B 24, 3349 (1981).CrossRefGoogle Scholar
25.Janik, E. and Triboulet, R.: Ohmic contacts to p-type cadmium telluride and cadmium mercury telluride. J. Phys. D: Appl. Phys. 16, 2333 (1983).CrossRefGoogle Scholar
26.Bastola, E., Bhandari, K. P., Matthews, A. J., Shrestha, N., and Ellingson, R. J.: Elemental anion thermal injection synthesis of nanocrystalline marcasite iron dichalcogenide FeSe2 and FeTe2. RSC Adv. 6, 69708 (2016).CrossRefGoogle Scholar
27.Hosseinpour, Z., Alemi, A., Khandar, A. A., Zhao, X., and Xie, Y.: A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties. New J. Chem. 39, 5470 (2015).CrossRefGoogle Scholar
28.Xing, C., Zhang, D., Cao, K., Zhao, S., Wang, X., Qin, H., Liu, J., Jiang, Y., and Meng, L.: In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. A 3, 8742 (2015).CrossRefGoogle Scholar
29.Saldanha, P. L., Brescia, R., Prato, M., Li, H., Povia, M., Manna, L., and Lesnyak, V.: Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles. Chem. Mater. 26, 1442 (2014).CrossRefGoogle Scholar
30.Langford, J. I. and Wilson, A.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978).CrossRefGoogle Scholar
31.El-Trass, A., ElShamy, H., El-Mehasseb, I., and El-Kemary, M.: CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997 (2012).CrossRefGoogle Scholar
32.Liu, P., Cai, W. and Zeng, H.: Fabrication and size-dependent optical properties of FeO nanoparticles induced by laser ablation in a liquid medium. J. Phys. Chem. C 112, 3261 (2008).CrossRefGoogle Scholar
33.Wiltrout, A. M., Freymeyer, N. J., Machani, T., Rossi, D. P., and Plass, K. E.: Phase-selective synthesis of bornite nanoparticles. J. Mater. Chem. 21, 19286 (2011).CrossRefGoogle Scholar
34.Moreels, I., Lambert, K., Smeets, D., De Muynck, D., Nollet, T., Martins, J. C., Vanhaecke, F., Vantomme, A., Delerue, C., Allan, G., and Hens, Z.: Size-dependent optical properties of colloidal PbS quantum dots. Acs Nano 3, 3023 (2009).CrossRefGoogle ScholarPubMed
35.Li, W., Doblinger, M., Vaneski, A., Rogach, A. L., Jackel, F., and Feldmann, J.: Pyrite nanocrystals: shape-controlled synthesis and tunable optical properties via reversible self-assembly. J. Mater. Chem. 21, 17946 (2011).CrossRefGoogle Scholar
36.Castro, S. L., Bailey, S. G., Raffaelle, R. P., Banger, K. K., and Hepp, A. F.: Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem. Mater. 15, 3142 (2003).CrossRefGoogle Scholar
37.Xu, Y. and Schoonen, M. A.: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543 (2000).CrossRefGoogle Scholar
38.Chunrui, W., Shaolin, X., Junqing, H., and Kaibin, T.: Raman, far infrared, and mössbauer spectroscopy of CuFeS2 Nanocrystallites. Jpn. J. Appl. Phys. 48, 023003 (2009).Google Scholar
39.Subedi, I., Bhandari, K. P., Ellingson, R. J., and Podraza, N. J.: Near infrared to ultraviolet optical properties of bulk single crystal and nanocrystal thin film iron pyrite. Nanotechnology 27, 295702 (2016).CrossRefGoogle ScholarPubMed
40.Bruggeman, V. D.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636 (1935).CrossRefGoogle Scholar
41.Teranishi, T. and Sato, K.: Optical, electrical and magnetic properties of chalcopyrite, CuFeS2. J. Phys. Colloques 36, C3 (1975).CrossRefGoogle Scholar
Supplementary material: File

Bastola et al. supplementary material

Bastola et al. supplementary material 1

Download Bastola et al. supplementary material(File)
File 2 MB