Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-8r8mm Total loading time: 0.231 Render date: 2021-12-06T18:20:58.942Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique

Published online by Cambridge University Press:  06 February 2019

Martina Aurora Costa Angeli*
Affiliation:
Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Tobias Cramer
Affiliation:
Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
Beatrice Fraboni
Affiliation:
Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
Luca Magagnin
Affiliation:
Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Dario Gastaldi
Affiliation:
Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Pasquale Vena
Affiliation:
Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
*
Address all correspondence to Martina Aurora Costa Angeli at martinaaurora.costa@polimi.it
Get access

Abstract

Inkjet printing is a promising technology providing cost-effective method for processing various materials on deformable substrates. In this work, linear and serpentine inkjet printed interconnects on two different substrates were fabricated and electromechanically characterized. A particular attention was given to the optimization of the process parameters; high quality can be achieved only printing slowly in vertical direction and optimizing the drop spacing to the specific pattern. The electromechanical results showed that the geometrical layout and printing direction strongly affect the printing quality and the electromechanical response; serpentine shapes should be preferred to straight interconnects as better gauge factors are obtained.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stringer, J., Althagathi, T.M., Tse, C.C.W., Duong Ta, V., Shephard, J.D., Esenturk, E., Connaughton, C., Wasley, T.J., Li, J., Kay, R.W., and Smith, P.J.: Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality. Manufacturing Rev. 3, 117 (2016).CrossRefGoogle Scholar
2.Sowade, E., Ramon, E., Yoti Mitra, K., Martínez-Domingo, C., Pedró, M., Pallarès, J., Loffredo, F., Villani, F., Gomes, H.L., Terés, L., and Baumann, R.R.: All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis. Sci. R. 6, 33490–33415 (2016).Google ScholarPubMed
3.Correia, V., Mitra, K.Y., Castro, H., Rocha, J.G., Sowade, E., Baumann, R.R., and Lanceros-Mendez, S.: Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. J. Manuf. Process. 31, 364371 (2018).CrossRefGoogle Scholar
4.Borghetti, M, Serpelloni, M., Sardini, E., and Pandini, S.: Mechanical behavior of strain sensors based on PEDOT:PSS and silvernanoparticles inks deposited on polymer substrate by inkjet printing. Sens. Actuators A 243, 7180 (2016).CrossRefGoogle Scholar
5.Islam Khan, N., Maddaus, A.G., and Song, E.: A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Bionsens. 8, 725 (2018).CrossRefGoogle Scholar
6.Gonzalez, M., Axisa, F., Vanden Bulcke, M., Brosteaux, D., Vandevelde, B., and Vanfleteren, J.: Design of metal interconnects for stretchable electronic circuits. Micro. Reliab. 48, 825832 (2008).CrossRefGoogle Scholar
7.Khan, S., Lorenzelli, L., and Dahiya, R.: Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J. 15, 31643185 (2014).CrossRefGoogle Scholar
8.Cheng, T., Wu, Y., Shen, X., Lai, W., and Huang, W.: Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond. 39, 15001–8 (2018).CrossRefGoogle Scholar
9.Jiang, J., Bao, B., Li, M., Sun, J., Zhang, C., Li, Y., Li, F., Yao, X., and Song, Y.: Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 28, 14201426 (2016).CrossRefGoogle ScholarPubMed
10.Kim, Y., Ren, X., Kim, J.W., and Noh, H.: Direct inkjet printing of micro-scale silver electrodes on polydimethylsiloxane (PDMS). Microchip. J. Micromech. Microeng. 24, 115010–10 (2014).CrossRefGoogle Scholar
11.Abu-Khalaf, J., Saraireh, R., Eisa, S., and Al-Halhouli, A.: Experimental characterization of inkjet-printed stretchable circuits for wearable sensor applications. Sensors 18, 34763499 (2018).CrossRefGoogle ScholarPubMed
12.Bowden, N., Huck, W.T.S., Paul, K.E., and Whitesides, G.M.: The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. App. Phys. Lett. 75, 25572559 (1999).CrossRefGoogle Scholar
13.Guo, L. and DeWeerth, S.P.: Effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6, 28472852 (2010).CrossRefGoogle ScholarPubMed
14.Aziz, S., Go Bum, K., Jin Yang, Y., Yang, B., Kang, C.U., Hoi Doh, Y., Hyun Choi, K., and Chan Kim, H.: Fabrication of ZnSnO3 based humidity sensor onto arbitrary substrates by micro-Nano scale transfer printing. Sens. Actuators A. 246, 18 (2016).CrossRefGoogle Scholar
15.Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., and Park, I.: Highly stretchable and sensitive strain sensor based on silvernanowire elastomer nanocomposite. AcS Nano 8, 51545163 (2014).CrossRefGoogle ScholarPubMed
16.Cammarano, A., De Luca, G., and Amendola, E.: Surface modification and adhesion improvement of polyester films. Cent. Eur. J. Chem. 11, 3545 (2013).CrossRefGoogle Scholar
17.Seifert, T., Sowade, E., Roscher, F., Wiemer, M., Gessner, T., and Baumann, R.R.: Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54, 769779 (2015).CrossRefGoogle Scholar
18.Sowade, E., Polomoshnov, M., and Baumann, R.R.: The design challenge in printing devices and circuits: influence of the orientation of print patterns in inkjet-printed electronics. Org. Electron. 37, 428438 (2016).CrossRefGoogle Scholar
19.Madsen, M.H., Feidenhans, N.A., Hansen, P., Garnæs, J., and Dirscherl, K.: Accounting for PDMS shrinkage when replicating structures. J. Micromech. Microeng. 24, 127002–6 (2014).CrossRefGoogle Scholar
20.Bonacchini, G.E., Bossio, C., Greco, F., Mattoli, V., Kim, Y., Lanzani, G., and Caironi, M: tattoo-paper transfer as a versatile platform for all-printed organic edible electronics. Adv. Mater. 30, 1706091–8 (2018).CrossRefGoogle ScholarPubMed
Supplementary material: File

Costa Angeli et al. supplementary material

Figures S1-S3

Download Costa Angeli et al. supplementary material(File)
File 2 MB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Reliability of inkjet printed silver nanoparticle interconnects on deformable substrates tested through an electromechanical in-situ technique
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *