Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-21T20:58:35.110Z Has data issue: false hasContentIssue false

One-step fabrication of binder-free three-dimensional Co3O4 electrodes by Reactive Spray Deposition Technology for application in high-performance supercapacitors

Published online by Cambridge University Press:  22 April 2018

Yang Wang*
Affiliation:
University of Connecticut, 97 N Eagleville Rd, Storrs, CT 06269, USA
Junkai He
Affiliation:
University of Connecticut, 97 N Eagleville Rd, Storrs, CT 06269, USA
Justin Roller
Affiliation:
Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA
Radenka Maric
Affiliation:
University of Connecticut, 97 N Eagleville Rd, Storrs, CT 06269, USA
*
Address all correspondence to Yang Wang at yang.2.wang@uconn.edu
Get access

Abstract

Binder-free three-dimensional Co3O4 electrodes are fabricated by an economical and scalable one-step flame combustion method, namely Reactive Spray Deposition Technology. The electrodes are composed of porous nanostructured Co3O4 uniformly distributed throughout the conductive substrate. In the absence of any further optimization on the processing conditions, the as-synthesized electrodes demonstrate high capacitance of 567 F g−1 at 1.5 A g−1, excellent rate capability, and stable cycling performance with a capacity retention ratio of 96.7% after 1000 charge/discharge cycles from the three-electrode half-cell testing. This study presents the pathway to a significantly simplified manufacturing process of three-dimensional electrodes with the desirable porous nanostructure.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Liao, Q., Li, N., Jin, S., Yang, G., and Wang, C.: All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9, 5310 (2015).Google Scholar
2.Choi, B.G., Yang, M., Hong, W.H., Choi, J.W., and Huh, Y.S.: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6, 4020 (2012).Google Scholar
3.Jin, H., Wang, X., Gu, Z., and Polin, J.: Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J. Power Sources 236, 285 (2013).Google Scholar
4.Dam, D.T., Wang, X., and Lee, J.M.: Graphene/NiO nanowires: controllable one-pot synthesis and enhanced pseudocapacitive behavior. ACS Appl. Mater. Interfaces 6, 8246 (2014).Google Scholar
5.Meher, S.K. and Rao, G.R.: Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115, 15646 (2011).CrossRefGoogle Scholar
6.Chee, W.K., Lim, H.N., Harrison, I., Chong, K.F., Zainal, Z., Ng, C.H., and Huang, N.M.: Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 157, 88 (2015).CrossRefGoogle Scholar
7.Kumar, R., Singh, R.K., Vaz, A.R., Savu, R., and Moshkalev, S.A.: Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 9, 8880 (2017).Google Scholar
8.Wang, L., Chen, L., Yan, B., Wang, C., Zhu, F., Jiang, X., Chao, Y., and Yang, G.: In situ preparation of SnO2 @ polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J. Mater. Chem. A 2, 8334 (2014).CrossRefGoogle Scholar
9.Moosavifard, S.E., El-Kady, M.F., Rahmanifar, M.S., Kaner, R.B., and Mousavi, M.F.: Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 4851 (2015).Google Scholar
10.Maiti, S., Pramanik, A., and Mahanty, S.: Interconnected network of MnO2 nanowires with a “cocoonlike” morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. ACS Appl. Mater. Interfaces 6, 10754 (2014).Google Scholar
11.Hao, Q., Xia, X., Lei, W., Wang, W., and Qiu, J.: Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon N. Y. 81, 552563 (2015).CrossRefGoogle Scholar
12.Huang, Y., Li, H., Wang, Z., Zhu, M., Pei, Z., Xue, Q., Huang, Y., and Zhi, C.: Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22, 422438 (2016).Google Scholar
13.D'Arcy, J.M., El-Kady, M.F., Khine, P.P., Zhang, L., Lee, S.H., Davis, N.R., Liu, D.S., Yeung, M.T., Kim, S.Y., Turner, C.L., and Lech, A.T.: Vapor-phase polymerization of nanofibrillar poly (3, 4-ethylenedioxythiophene) for supercapacitors. ACS Nano 8, 15001510 (2014).Google Scholar
14.Jang, G.S., Ameen, S., Akhtar, M.S., and Shin, H.S.: Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 44, 588 (2018).CrossRefGoogle Scholar
15.Du, F., Zuo, X.Q., Yang, Q., Li, G., Ding, Z.L., Wu, M.Z., Ma, Y.Q., Jin, S.W., and Zhu, K.R.: Facile hydrothermal reduction synthesis of porous Co3O4 nanosheets @ RGO nanocomposite and applied as a supercapacitor electrode with enhanced specific capacitance and excellent cycle stability. Electrochim. Acta 222, 976 (2016).CrossRefGoogle Scholar
16.Ding, K., Zhang, X., Yang, P., and Cheng, X.: A precursor-derived morphology-controlled synthesis method for mesoporous Co3O4 nanostructures towards supercapacitor application. CrystEngComm 18, 8253 (2016).Google Scholar
17.Deng, S., Xiao, X., Chen, G., Wang, L., and Wang, Y.: Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application. Electrochim. Acta 196, 316 (2016).CrossRefGoogle Scholar
18.Yan, D., Zhang, H., Chen, L., Zhu, G., Li, S., Xu, H., and Yu, A.: Biomorphic synthesis of mesoporous Co3O4 microtubules and their pseudocapacitive performance. ACS Appl. Mater. Interfaces 6, 15632 (2014).Google Scholar
19.Rakhi, R.B., Chen, W., Hedhili, M.N., Cha, D., and Alshareef, H.N.: Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl. Mater. Interfaces 6, 4196 (2014).Google Scholar
20.Qu, L., Zhao, Y., Khan, A.M., Han, C., Hercule, K.M., Yan, M., Liu, X., Chen, W., Wang, D., Cai, Z., and Xu, W.: Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@ NixCo2x(OH)6x for high-performance supercapacitors. Nano Lett. 15, 20372044 (2015).Google Scholar
21.Hong, W., Wang, J., Li, Z., and Yang, S.: Fabrication of Co3O4@ Co–Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage. Energy 93, 435441 (2015).Google Scholar
22.Dong, X.C., Xu, H., Wang, X.W., Huang, Y.X., Chan-Park, M.B., Zhang, H., Wang, L.H., Huang, W., and Chen, P.: 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 32063213 (2012).Google Scholar
23.Hong, W., Wang, J., Gong, P., Sun, J., Niu, L., Yang, Z., Wang, Z., and Yang, S.: Rational construction of three dimensional hybrid Co3O4@ NiMoO4 nanosheets array for energy storage application. J. Power Sources 270, 516525 (2014).CrossRefGoogle Scholar
24.Roth, P.: Particle synthesis in flames. Proc. Combust. Inst. 31, 1773 (2007).CrossRefGoogle Scholar
25.Strobel, R. and Pratsinis, S.E.: Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 17, 4743 (2007).Google Scholar
26.Švegl, F., Orel, B., Hutchins, M.G., and Kalcher, K.: Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films. J. Electrochem. Soc. 143, 1532 (1996).Google Scholar
27.Wang, Y., Lei, Y., Li, J., Gu, L., Yuan, H., and Xiao, D.: Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl. Mater. Interfaces 6, 6739 (2014).Google Scholar
28.Du, H., Jiao, L., Wang, Q., Yang, J., Guo, L., Si, Y., Wang, Y., and Yuan, H.: Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 6, 87 (2013).CrossRefGoogle Scholar
29.Ke, Q.Q., Tang, C.H., Yang, Z.C., Zheng, M.R., Mao, L., Liu, H.J., and Wang, J.: 3D nanostructure of carbon nanotubes decorated Co3O4 nanowire arrays for high performance supercapacitor electrode. Electrochim. Acta 163, 9 (2015).Google Scholar
30.Qorbani, M., Chou, T., Lee, Y., Samireddi, S., Naseri, N., Ganguly, A., Esfandiar, A., Wang, C., Chen, L., Chen, K., and Moshfegh, A.Z.: Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. J. Mater. Chem. 5, 12569 (2017).Google Scholar