Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-nshs2 Total loading time: 0.324 Render date: 2022-01-23T21:56:59.064Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Novel magnetic arrangement and structural phase transition induced by spin–lattice coupling in multiferroics

Published online by Cambridge University Press:  18 December 2013

Satadeep Bhattacharjee
Affiliation:
Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701
Dovran Rahmedov
Affiliation:
Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701
Laurent Bellaiche
Affiliation:
Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701
Dawei Wang
Affiliation:
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
Get access

Abstract

Using an effective Hamiltonian of mutiferroic BiFeO3 (BFO) as a toy model, we explore the effect of the coefficient, C, characterizing the strength of the spin–current interaction, on physical properties. We observe that for larger C values and below a critical temperature, the magnetic moments organize themselves in a novel cycloid, which propagates along a low-symmetry direction and is associated with a structural phase transition from polar rhombohedral to a polar triclinic state. We emphasize that both of these magnetic and structural transitions are results of a remarkable self-organization of different solutions of the spin–current model.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Spaldin, N.A. and Fiebig, M.: The renaissance of magnetoelectric multiferroics, Science 309, 391 (2005).CrossRefGoogle ScholarPubMed
2.Ramesh, R. and Spaldin, N.A.: Multiferroics: progress and prospects in thin films, Nature Materials 6, 21 (2007).CrossRefGoogle ScholarPubMed
3.Wojdel, J.C and Iñiguez, J.: Magnetoelectric response of multiferroic BiFeO3 and related materials from first-principles calculations, Phys. Rev. Lett. 103, 267205 (2009).CrossRefGoogle ScholarPubMed
4.Wojdel, J.C and Iñiguez, J.: Ab initio indications for giant magnetoelectric effects driven by structural softness, Phys. Rev. Lett. 105, 037208 (2010).CrossRefGoogle ScholarPubMed
5.Ederer, C. and Fennie, C.J.: Electric-field switchable magnetization via the DzyaloshinskiiMoriya interaction: FeTiO3 versus BiFeO3, J. Phys. Condens. Matter 20, 434219 (2008).CrossRefGoogle Scholar
6.Benedek, N.A. and Fennie, C.J.: Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling, Phys. Rev. Lett. 106, 107204 (2011).CrossRefGoogle ScholarPubMed
7.Katsura, H., Nagaosa, N., and Balatsky, A.: Spin current and magnetoelectric effect in noncollinear magnets, Phys. Rev. Lett. 95, 057205 (2005).CrossRefGoogle ScholarPubMed
8.Raeliarijaona, A., Singh, S., Fu, H., and Bellaiche, L.: Predicted coupling of the electromagnetic angular momentum density with magnetic moments, Phys. Rev. Lett. 110, 137205 (2013).CrossRefGoogle ScholarPubMed
9.Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241 (1958).CrossRefGoogle Scholar
10.Moriya, T.: New mechanism of anisotropic superexchange interaction, Phys. Rev. Lett. 4, 228 (1960).CrossRefGoogle Scholar
11.Kimura, T., Goto, T, Shintani, H, Ishizaka, K, Arima, T, and Tokura, Y: Magnetic control of ferroelectric polarization, Nature 426, 55 (2003).CrossRefGoogle ScholarPubMed
12.Yamasaki, Y., Sagayama, H., Abe, N., Arima, T., Sasai, K., Matsuura, M., Hirota, K., Okuyama, D., Noda, Y., and Tokura, Y.: Cycloidal spin order in the a-axis polarized ferroelectric phase of orthorhombic perovskite manganite, Phys. Rev. Lett. 101, 097204 (2008).CrossRefGoogle ScholarPubMed
13.Lebeugle, D., Colson, D., Forget, A., Viret, M., Bataille, A. M., and Gukasov, A.: Electric-field-induced spin flop in BiFeO3 single crystals at room temperature, Phys. Rev. Lett. 100, 227602, (2008).CrossRefGoogle ScholarPubMed
14.Rahmedov, D., Wang, D., Iniguez, J., and Bellaiche, L.: Magnetic cycloid of BiFeO3 from atomistic simulations, Phys. Rev. Lett. 109, 037207 (2012).CrossRefGoogle ScholarPubMed
15.Sosnowska, I., Loewenhaupt, M., David, W.I.F., and Ibberson, R.M.: Investigation of the unusual magnetic spiral arrangement in BiFeO3, Physica B 180, 117 (1992).Google Scholar
16.Sosnowska, I., Peterlin-Neumaier, T., and Steichele, E.: Spiral magnetic ordering in bismuth ferrite, J. Phys. C Solid State Phys. 15, 4835 (1982).CrossRefGoogle Scholar
17.Zalesskii, A.V., Frolov, A.A., Zvezdin, A.K., Gippius, A.A., Morozova, E.N., Khozeevc, D.F., Bush, A.S., and Pokatilov, V.S.: Effect of spatial spin modulation on the relaxation and NMR frequencies of 57Fe nuclei in a ferroelectric antiferromagnet BiFeO3, J. Exp. Theor. Phys. 95, 101 (2002).CrossRefGoogle Scholar
18.Zalesskii, A.V., Zvezdin, A.K., Frolov, A.A., and Bush, A.A.: 57Fe NMR study of a spatially modulated magnetic structure in BiFeO3, J. Exp. Theor. Phys. Lett. 71, 465 (2000).CrossRefGoogle Scholar
19.Bush, A.A., Gippius, A.A., Zalesskii, A.V., and Morozova, E.N.: 209 Bi NMR spectrum of BiFeO3 in the presence of spatial modulation of hyperfine fields, J. Exp. Theor. Phys. Lett. 78, 389 (2003).CrossRefGoogle Scholar
20.Ramazanoglu, M., Ratcliff II, W., Choi, Y.J., Lee, Seongsu, Cheong, S.-W., and Kiryukhin, V.: Temperature-dependent properties of the magnetic order in single-crystal BiFeO3, Phys. Rev. B 83, 174434 (2011).CrossRefGoogle Scholar
21.Sosnowska, I. and Przenioslo, R.: Low-temperature evolution of the modulated magnetic structure in the ferroelectric antiferromagnet BiFeO3, Phys. Rev. B 84, 144404 (2011).CrossRefGoogle Scholar
22.Przenioslo, R., Palewicz, A., Regulski, M., Sosnowska, I., Ibberson, R.M., and Knight, K.S.: Does the modulated magnetic structure of BiFeO3 change at low temperatures?, J. Phys. Condens. Matter 18, 2069 (2006).CrossRefGoogle Scholar
23.Pokatilov, V.S. and Sigov, A.S.: 57Fe NMR study of multiferroic BiFeO3, J. Exp. Theor. Phys. 110, 440 (2010).CrossRefGoogle Scholar
24.Sosnowska, I. and Zvezdin, A.L.: Journal of magnetism and magnetic materials, J. Magn. Magn. Mater. 140–144, 167 (1995).Google Scholar
25.de Sousa, R. and Moore, J.E.: Electrical control of magnon propagation in multiferroic BiFeO3 films, Appl. Phys. Lett. 92, 022514 (2008).CrossRefGoogle Scholar
26.Jeong, J., Goremychkin, E.A., Guidi, T., Nakajima, K., Jeon, Gun Sang, Kim, Shin-Ae, Furukawa, S., Kim, Yong Baek, Lee, Seongsu, Kiryukhin, V., Cheong, S-W., and Park, Je-Geun: Spin wave measurements over the full brillouin zone of multiferroic BiFeO3, Phys. Rev. Lett. 108, 077202 (2012).CrossRefGoogle ScholarPubMed
27.Catalan, G. and Scott, J.F., Physics and Applications of Bismuth Ferrite, Adv. Mater. 21, 2463 (2009).CrossRefGoogle Scholar
28.Zhong, W., Vanderbilt, D., and Rabe, K.M.: First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO3, Phys. Rev. B 52, 6301 (1995).CrossRefGoogle ScholarPubMed
29.Albrecht, D., Lisenkov, S., Ren, Wei, Rahmedov, D., Kornev, Igor A., and Bellaiche, L.: Ferromagnetism in multiferroic BiFeO3 films: a first-principles-based study, Phys. Rev. B 81, 140401 (2010).CrossRefGoogle Scholar
30.Ederer, C. and Spaldin, N.: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B 71, 060401 (2005).CrossRefGoogle Scholar
31.Bellaiche, L., Gui, Z., and Kornev, I.A.: A simple law governing coupled magnetic orders in perovskites, J. Phys. Condens. Matter 24, 312201 (2012).CrossRefGoogle ScholarPubMed
32.Wang, D., Weerasinghe, J., and Bellaiche, L.: Atomistic molecular dynamic simulations of multiferroics, Phys. Rev. Lett. 109, 067203 (2012).Google ScholarPubMed
33.Ramazanoglu, M., Laver, M., Ratcliff, W. II, Watson, S.M., Chen, W.C., Jackson, A., Kothapalli, K., Lee, Seongsu, Cheong, S.-W., and Kiryukhin, V.: Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3, Phys. Rev. Lett. 107, 207206 (2011).CrossRefGoogle ScholarPubMed
34.George, A.M., Iñiguez, J., and Bellaiche, L.: Optical phonons associated with the low-temperature ferroelectric properties of perovskite solid solutions, Phys. Rev. B 65, 180301 (2002).CrossRefGoogle Scholar
35.Schmid, H.: Some symmetry aspects of ferroics and single phase multiferroics, J. Phys. Condens. Matter 20, 434201 (2008).CrossRefGoogle Scholar
36.Noheda, B., Cox, D.E., Shirane, G., Gonzalo, J.A., Cross, L.E., and Park, S-E.: A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution, Appl. Phys. Lett. 74, 2059 (1999).CrossRefGoogle Scholar
37.Kiat, J.-M., Uesu, Y., Dkhil, B., Matsuda, M., Malibert, C., and Calvarin, G.: Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds, Phys. Rev. B 65, 064106 (2002).CrossRefGoogle Scholar
38.Bellaiche, L., Garcia, A., and Vanderbilt, D.: Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles, Phys. Rev. Lett. 84, 5427 (2000).CrossRefGoogle ScholarPubMed
39.Bellaiche, L., Garcia, A., and Vanderbilt, D.: Low-temperature properties of Pb(Zr1-xTix)O3 solid solutions, Ferroelectrics 266, 41 (2002).Google Scholar
40.George, A.M., Iñiguez, J., and Bellaiche, L.: Anomalous properties in ferroelectrics induced by atomic ordering, Nature 413, 54 (2001).CrossRefGoogle ScholarPubMed
41.Iñiguez, J. and Bellaiche, L.: Ab initio design of perovskite alloys with predetermined properties: the case of Pb(Sc0.5Nb0.5)O3, Phys. Rev. Lett. 87, 095503 (2001).CrossRefGoogle Scholar
42.Prosandeev, S., Wang, D., Ren, W., Iñiguez, J., and Bellaiche, L.: Novel nanoscale twinned phases in perovskite oxides, Adv. Funct. Mater. 23, 234 (2013).CrossRefGoogle Scholar
43.Sando, D., Agbelele, A., Rahmedov, D., Liu, J., Rovillain, P., Toulouse, C., Infante, I.C., Pyatakov, A.P., Fusil, S., Jacquet, E., Carretero, C., Deranlot, C., Lisenkov, S., Wang, D., Le Breton, J-M., Cazayous, M., Sacuto, A., Juraszek, J., Zvezdin, A.K., Bellaiche, L., Dkhil, B., Barthlmy, A., and Bibes, M.: Nature Materials, Nat. Mater. DOI:10.1038/NMAT3629.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Novel magnetic arrangement and structural phase transition induced by spin–lattice coupling in multiferroics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Novel magnetic arrangement and structural phase transition induced by spin–lattice coupling in multiferroics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Novel magnetic arrangement and structural phase transition induced by spin–lattice coupling in multiferroics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *