Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-22T04:59:20.962Z Has data issue: false hasContentIssue false

Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment

Published online by Cambridge University Press:  28 August 2018

George N. Kotsonis*
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, 27606, USA Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Christina M. Rost
Affiliation:
Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
David T. Harris
Affiliation:
Materials Science and Engineering, University of Wisconsin – Madison, Madison, Wisconsin 53706, USA
Jon-Paul Maria
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, 27606, USA Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
*
Address all correspondence to George N. Kotsonis at gnk5@psu.edu
Get access

Abstract

This paper explores thin films of the entropy-stabilized oxide (ESO) composition MgxNixCoxCuxZnxScxO (x ~ 0.167) grown by laser ablation in incremental gas pressures and O2/Ar ratios to modulate particle kinetic energy and plume reactivity. Low pressures supporting high kinetic energy adatoms favor the kinetic stabilization of a single rocksalt phase, while high pressures (low kinetic energy adatoms) result in phase separation. The pressure threshold for phase separation is a function of O2/Ar ratio. These findings suggest large kinetic energies facilitate the assembly and quench of metastable ESO phases that may require immoderate physical or chemical conditions to synthesize using near-equilibrium techniques.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., and Maria, J.-P.: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).Google Scholar
2.Bérardan, D., Franger, S., Dragoe, D., Meena, A.K., and Dragoe, N.: Colossal dielectric constant in high entropy oxides. Phys. Status Solidi—Rapid Res. Lett. 10, 328 (2016).Google Scholar
3.Berardan, D., Franger, S., Meena, A.K., and Dragoe, N.: Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536 (2016).Google Scholar
4.Berardan, D., Meena, A.K., Franger, S., Herrero, C., and Dragoe, N.: Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 704, 693 (2017).Google Scholar
5.Rost, C.M.: Entropy-Stabilized Oxides: Explorations of a Novel Class of Multicomponent Materials. Doctoral Dissertation, North Carolina State University, Raleigh, NC, USA, 2016.Google Scholar
6.Rak, Z., Rost, C.M., Lim, M., Sarker, P., Toher, C., Curtarolo, S., Maria, J.P., and Brenner, D.W.: Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations. J. Appl. Phys. 120, 095105 (2016).Google Scholar
7.Sarkar, A., Djenadic, R., Usharani, N.J., Sanghvi, K.P., Chakravadhanula, V.S.K., Gandhi, A.S., Hahn, H., and Bhattacharya, S.S.: Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 37, 747 (2017).Google Scholar
8.Meisenheimer, P.B., Kratofil, T.J., and Heron, J.T.: Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7, 3 (2017).Google Scholar
9.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).Google Scholar
10.Zheng, J.P., Huang, Z.Q., Shaw, D.T., and Kwok, H.S.: Generation of high-energy atomic beams in laser-superconducting target interactions. Appl. Phys. Lett. 54, 280 (1989).Google Scholar
11.Geohegan, D.B.: Physics and diagnostics of laser ablation plume propagation for high-Tc superconductor film growth. Thin Solid Films 220, 138 (1992).Google Scholar
12.Geohegan, D.B. and Puretzky, A.A.: Laser ablation plume thermalization dynamics in background gases: combined imaging, optical absorption and emission spectroscopy, and ion probe measurements. Appl. Surf. Sci. 96–98, 131 (1996).Google Scholar
13.Amoruso, S., Aruta, C., Bruzzese, R., Maccariello, D., Maritato, L., Miletto Granozio, F., Orgiani, P., Scotti di Uccio, U., and Wang, X.: Optimization of La0.7Ba0.3MnO3−δ complex oxide laser ablation conditions by plume imaging and optical emission spectroscopy. J. Appl. Phys. 108, 043302 (2010).Google Scholar
14.Aruta, C., Amoruso, S., Bruzzese, R., Wang, X., Maccariello, D., Miletto Granozio, F., and Scotti Di Uccio, U.: Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3: plasma plume effects. Appl. Phys. Lett. 97, 252105 (2010).Google Scholar
15.Sambri, A., Cristensen, D.V., Trier, F., Chen, Y.Z., Amoruso, S., Pryds, N., Bruzzese, R., and Wang, X.: Plasma plume effects on the conductivity of amorphous-LaAlO3/SrTiO3 interfaces grown by pulsed laser deposition in O2 and Ar. Appl. Phys. Lett. 100, 231605 (2012).Google Scholar
16.Ojeda-G-P, A., Schneider, C.W., Lippert, T., and Wokaun, A.: Pressure and temperature dependence of the laser-induced plasma plume dynamics Pressure and temperature dependence of the laser-induced plasma plume dynamics. J. Appl. Phys. 120, 225301 (2016).Google Scholar
17.Orsel, K., Groenen, R., Bastiaens, B., Koster, G., Rijnders, G., and Boller, K.J.: Influence of the oxidation state of SrTiO3 plasmas for stoichiometric growth of pulsed laser deposition films identified by laser induced fluorescence. APL Mater. 3, 106103 (2015).Google Scholar
18.Groenen, R., Smit, J., Orsel, K., Vailionis, A., Bastiaens, B., Huijben, M., Boller, K., Rijnders, G., and Koster, G.: Research Update: Stoichiometry controlled oxide thin film growth by pulsed laser deposition. APL Mater. 3, 070701 (2015).Google Scholar
19.Tseng, T.F., Yeh, M.H., Liu, K.S., and Lin, I.N.: Effects of ambient gas pressure on (1-x)SrTiO3-xBaTiO3 films prepared by pulsed laser deposition. J. Appl. Phys. 80, 4984 (1996).Google Scholar
20.Maria, J.-P., Trolier-McKinstry, S., Schlom, D.G., Hawley, M.E., and Brown, G.W.: The influence of energetic bombardment on the structure and properties of epitaxial SrRuO3 thin films grown by pulsed laser deposition. J. Appl. Phys. 83, 4373 (1998).Google Scholar
21.Wang, C., Cheng, B.L., Wang, S.Y., Lu, H.B., Zhou, Y.L., Chen, Z.H., and Yang, G.Z.: Effects of oxygen pressure on lattice parameter, orientation, surface morphology and deposition rate of (Ba0.02Sr0.98)TiO3 thin films grown on MgO substrate by pulsed laser deposition. Thin Solid Films 485, 82 (2005).Google Scholar
22.Saremi, S., Xu, R., Dedon, L.R., Mundy, J.A., Hsu, S., Chen, Z., Damodaran, A.R., Chapman, S.P., Evans, J.T., and Martin, L.W.: Enhanced electrical resistivity and properties via ion bombardment of ferroelectric thin films. Adv. Mater. 28, 10750 (2016).Google Scholar
23.Work, D.E. and Eick, H.A.: On the preparation of condensed ScO. J. Less-Common Met. 26, 413 (1972).Google Scholar
24.Gorbenko, O.Y., Samoilenkov, S.V., Graboy, I.E., and Kaul, A.R.: Epitaxial stabilization in thin films of oxides. Chem. Mater. 14, 4026 (2002).Google Scholar
25.Rost, C.M., Rak, Z., and Maria, J.-P.: Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: an EXAFS study. J. Am. Ceram. Soc. 100, 1 (2017).Google Scholar
26.Navrotsky, A. and Kleppa, O.J.: The thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29, 2701 (1967).Google Scholar
27.Wyckoff, R.W.G.: Crystal Structures, Vol. 2, 2nd ed. (Interscience, New York, 1964), pp. 26.Google Scholar
28.Kato, N. and Lang, A.R.: A study of pendellossung fringes in X-ray diffraction. Acta Cryst. 12, 787 (1959).Google Scholar
29.Smith, E.H., King, P.D.C., Soukiassian, A., Ast, D.G., and Schlom, D.G.: Hybrid reflections from multiple x-ray scattering in epitaxial oxide films. Appl. Phys. Lett. 111, 131903 (2017).Google Scholar
30.Zha, C.-S., Mao, H., and Hemley, R.J.: Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl. Acad. Sci. U. S. A. 97, 13494 (2000).Google Scholar
Supplementary material: PDF

Kotsonis et al. supplementary material

Figures S1-S8

Download Kotsonis et al. supplementary material(PDF)
PDF 947.7 KB