Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T14:06:20.673Z Has data issue: false hasContentIssue false

Effects of nanoporous Au on ATP synthase

Published online by Cambridge University Press:  14 January 2020

Naoki Miyazawa*
Affiliation:
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Nagatsuda-cho, Midori-ku, Yokohama226-8502, Japan
Masataka Hakamada
Affiliation:
Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto606-8501, Japan
Mamoru Mabuchi
Affiliation:
Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto606-8501, Japan
*
Address all correspondence to Naoki Miyazawa at miyazawa.n.ac@m.titech.ac.jp
Get access

Abstract

Nanoporous Au shows the antimicrobial activity without the release of ROS. The cell wall is hyperpolarized by npAu. Hence, the hyperpolarized cell wall may affect ATP synthase, leading to the bacterial death. In the present work, the effects of the hyperpolarized cell wall on the structure and functions of Asp61 in ATP synthase are investigated by molecular dynamics simulations and first-principles calculations. The simulations suggest that the Asp61 is more negatively hyperpolarized, which is due to the strengthened O–H bond in Asp61, in interacting with the hyperpolarized cell wall, which results in the disturbance of proton transport in ATP synthase.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sadhasivam, S., Shanmugam, P., Veerapandian, M., Subbiah, R., and Yun, K.: Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals 25, 351360 (2012).CrossRefGoogle ScholarPubMed
2.Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lu, X., and Jiang, X.: The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33, 23272333 (2012).CrossRefGoogle ScholarPubMed
3.Zhang, Y., Peng, H., Huang, W., Zhou, Y., and Yan, D.: Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 325, 371376 (2008).CrossRefGoogle ScholarPubMed
4.Sabert, D., Engelbrecht, S., and Junge, W.: Intersubunit rotation in active F-ATPase. Nature 381, 623625 (1996).CrossRefGoogle Scholar
5.Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. Jr.: Direct observation of the rotation of F1-ATPase. Nature 386, 249302 (1997).CrossRefGoogle ScholarPubMed
6.Martin, J.L., Ishmukhametov, R., Spetzler, D., Hornung, T., and Frasch, W.D.: Elastic coupling power stroke mechanism of the F1-ATPase molecular motor. Proc. Natl. Acad. Sci. USA 115, 57505755 (2018).CrossRefGoogle ScholarPubMed
7.Galeano, B., Korff, E., and Nicholson, W.L.: Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl. Environ. Microbiol. 69, 43294331 (2003).CrossRefGoogle ScholarPubMed
8.Khan, F.U., Chen, Y., Khan, N.U., Ahmad, A., Thahir, K., Khan, Z.U., Khan, A.U., Khan, S.U., Raza, M., and Wan, P.: Visible light inactivation of E. coli, cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb. Pathog. 107, 419427 (2017).CrossRefGoogle ScholarPubMed
9.Zhao, G. and Stevens, S.E. Jr.: Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. BioMetals 11, 2732 (1998).CrossRefGoogle ScholarPubMed
10.Hakamada, M., Taniguchi, S., and Mabuchi, M.: Antibacterial activity of nanoporous gold against Escherichia coli and Staphylococcus epidermidis. J. Mater. Res. 32, 17871795 (2017).CrossRefGoogle Scholar
11.Miyazawa, N., Hakamada, M., and Mabuchi, M.: Antibacterial mechanisms due to hyperpolarization induced by nanoporous Au. Sci. Rep. 8, 3870, 18 (2018).CrossRefGoogle Scholar
12.Srivastava, A.P., Luo, M., Zhou, W., Symersky, J., Bai, D., Chambers, M.G., Faraldo-Gómez, J.D., Liao, M., and Mueller, D.M.: High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science 360 (2018). doi:10.1126/science.aas9699.CrossRefGoogle Scholar
13.Boyer, P.D.: The ATP synthase a splendid molecular machine. Annu. Rev. Microbiol. 66, 717749 (1997).Google ScholarPubMed
14.Deckers-Hebestreit, G. and Altendorf, K.: The F0F1-type ATP synthesis of bacteria: structure and function of the F0 complex. Annu. Rev. Microbiol. 50, 791824 (1996).CrossRefGoogle ScholarPubMed
15.Fillingame, R.H.: Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine. J. Exp. Biol. 200, 217224 (1997).Google Scholar
16.Fillingame, R.H.: The Bacteria, Vol. 2 (Academic, New York, 1990) pp. 345391.Google Scholar
17.Duncan, T.M., Bulygin, V.V., Zhou, Y., Hutcheon, M.L., and Cross, R.L.: Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc. Natl. Acad. Sci. USA 92, 1096410968 (1995).CrossRefGoogle ScholarPubMed
18.Czub, J. and Grubmüller, H.: Torsional elasticity and energetics of F1-ATPase. Proc. Natl. Acad. Sci. USA 108, 74087413 (2011).CrossRefGoogle ScholarPubMed
19.Jiang, W. and Robert, F.H.: Interacting helical faces of subunits a and c in the F1F0 ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc. Natl. Acad. Sci. USA 95, 66076612 (1998).CrossRefGoogle Scholar
20.Gohlke, H., Schlieper, D., and Growth, G.: Resolving the negative potential side (n-side) water-accessible proton pathway of F-type ATP synthase by molecular dynamics simulations. J. Biol. Chem. 287, 3653636543 (2012).CrossRefGoogle ScholarPubMed
21.Fillingame, R.H. and Ryan Steed, P.: Half channels mediating H+ transport and the mechanism of gating in the F0 sector of Escherichia coli F1F0 ATP synthase. Biochim. Biophys. Acta 1837, 10631068 (2014).CrossRefGoogle Scholar
22.Sobti, M., Smits, C., Wong, A.S.W., Ishmukhametov, R., Stock, D., Sandin, S., and Stewart, A.G.: Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 5, e21598 (2016).CrossRefGoogle ScholarPubMed
23.Lin, Y.-S., Lin, J.-H., and Chang, C.-C.: Molecular dynamics simulations of the rotary motor F0 under external electric fields across the membrane. Biophys. J. 98, 10091017 (2010).CrossRefGoogle Scholar
24.MacKerell, A.D. Jr., Bashford, D., Bellott, M., Dunbrack, R.L. Jr., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 35863616 (1998).CrossRefGoogle ScholarPubMed
25.Spoel, D.V.D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 17011718 (2005).CrossRefGoogle Scholar
26.Abraham, M.J., Murtola, T., Schulz, R., Palla, S., Smith, J.C., Hess, B., and Lindahl, E.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X 1–12, 1925 (2015).Google Scholar
27.Delley, B.J.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508517 (1990).CrossRefGoogle Scholar
28.Delley, B. J.: From molecules to solids with the Dmol3 approach. J. Chem. Phys. 113, 77567764 (2000).CrossRefGoogle Scholar
29.Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C.: Atoms, molecules, solids, and surfaces: application of the generalized approximation for exchange and correlation. Phys. Rev. B 46, 66716687 (1992).CrossRefGoogle Scholar
30.Kobayashi, M., Struts, A.V., Fujiwara, T., Brown, M.F., and Akutsu, H.: Fluid mechanical matching of H+-ATP synthase subunit c-ring with lipid membranes revealed by 2H solid-state NMR. Biophys. J. 94, 43394347 (2008).CrossRefGoogle ScholarPubMed
31.Mukherjee, S. and Warshel, A.: Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the F0-ATPase. Proc. Natl. Acad. Sci. USA 109, 1487614881 (2012).CrossRefGoogle ScholarPubMed
32.Pogoryelova, D., Klyszejkoa, A.L., Krasnoselskaa, G.O., Hellera, E.-M., Leonec, V., Langerd, J.D., Voncka, J., Müllere, D.J., Faraldo-Gómezc, J.D., and Meiera, T.: Engineering rotor ring stoichiometries in the ATP synthase. Proc. Natl. Acad. Sci. USA 109, 96769677 (2012).Google Scholar
33.Murphy, B.J., Klusch, N., Langer, J., Mills, D.J., Yildiz, Ö, and Kühlbrandt, W.: Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-F0 coupling. Science 364, 1155 (2019).CrossRefGoogle Scholar
Supplementary material: File

Miyazawa et al. supplementary material

Figures S1 and S2

Download Miyazawa et al. supplementary material(File)
File 10.2 MB