Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gbqfq Total loading time: 0.25 Render date: 2022-05-18T07:54:23.730Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Dielectric behavior related to TiOx phase change to TiO2 in TiOx/Al2O3 nanolaminate thin films

Published online by Cambridge University Press:  13 May 2014

Geunhee Lee*
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080; Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343
Ram S. Katiyar
Affiliation:
Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343
Bo-Kuai Lai
Affiliation:
Lake Shore Cryotronics, Westerville, Ohio 43082
Charudatta Phatak
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Orlando Auciello*
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080
*
Address all correspondence to Geunhee Lee atgeunhee.lee@utdallas.eduand Orlando Aucielloorlando.auciello@utdallas.edu
Address all correspondence to Geunhee Lee atgeunhee.lee@utdallas.eduand Orlando Aucielloorlando.auciello@utdallas.edu
Get access

Abstract

We previously demonstrated that TiOx/Al2O3 nanolaminates (TAO NL) exhibit abnormally high-dielectric constant k (800–1000), due to Maxwell–Wagner polarization, via charge accumulation at insulating Al2O3/semiconducting TiOx interfaces. Here, we report TAO NL dielectric properties related to TiOx phase change in TiOx (0.9 nm)/Al2O3 (0.1 nm) NL. High-resolution transmission electron microscopy shows amorphous TiOx phase change to crystalline anatase TiO2 due to free-energy minimization. The phase change induce reduction in leakage current and dielectric loss (J = 10−2 to 10−4 A/cm2, tan δ = 10 to 10−1), still with k ~ 600 up to MHz, compared to amorphous TAO NLs.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Moore, G.E.: Integrated circuits. Proc. IEEE 86, 82 (1998).CrossRefGoogle Scholar
2.Pint, C.L., Nicholas, N.W., Xu, S., Sun, Z., Tour, J.M., Schmidt, H.K., Gordon, R.G., and Hauge, R.H.: Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49, 4890 (2011).CrossRefGoogle Scholar
3.Meng, F. and Ding, Y.: Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv. Mater. 23, 4098 (2011).CrossRefGoogle ScholarPubMed
4.Osada, M., Akatsuka, K., Ebina, Y., Funakubo, H., Ono, K., Takada, K., and Sasaki, T.: Robust high-k response in molecularly thin perovskite nanosheets. ACS Nano 4, 5225 (2010).CrossRefGoogle Scholar
5.Sanchez, D.A., Kumar, A., Ortega, N., Katiyar, R.S., and Scott, J.F.: Near-room temperature relaxor multiferroic. Appl. Phys. Lett. 97, 202910 (2010).CrossRefGoogle Scholar
6.Podpirka, A. and Ramanathan, S.: Thin film colossal dielectric constant oxide La2−xSrxNiO4: synthesis, dielectric relaxation measurements, and electrode effects. J. Appl. Phys. 109, 014106 (2011).CrossRefGoogle Scholar
7.Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., and Ramirez, A.P.: Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673 (2001).CrossRefGoogle ScholarPubMed
8.Lee, G., Lai, B-K., Phatak, C., Katiyar, R.S., and Auciello, O.: Interface-controlled high dielectric constant Al2O3/TiOx nanolaminates with low loss and low leakage current density for new generation nanodevices. J. Appl. Phys. 114, 124307 (2013).CrossRefGoogle Scholar
9.Lee, G., Lai, B-K., Phatak, C., Katiyar, R.S., and Auciello, O.: Tailoring dielectric relaxation in ultra-thin high-dielectric constant nanolaminates for nanoelectronics. Appl. Phys. Lett. 102, 142091 (2013).CrossRefGoogle Scholar
10.Li, W., Auciello, O., Premnath, R.N., and Kabius, B.: Giant dielectric constant dominated by Maxwell–Wagner relaxation in Al2O3/TiO2 nanolaminates synthesized by atomic layer deposition. Appl. Phys. Lett. 96, 162907 (2010).CrossRefGoogle Scholar
11.Ivorra, A.: Remote electrical stimulation by means of implanted rectifiers. PLoS ONE 6, e23456 (2011).CrossRefGoogle ScholarPubMed
12.Li, W., Chen, Z., Premnath, R.N., Kabius, B., and Auciello, O.: Controllable giant dielectric constant in Al2O3/TiO2 nanolaminates. J. Appl. Phys. 110, 024106 (2011).CrossRefGoogle Scholar
13.Prodromakis, T. and Papavassiliou, C.: Engineering the Maxwell–Wagner polarization effect. Appl. Surf. Sci. 255, 6989 (2009).CrossRefGoogle Scholar
14.Aarik, J., Aidla, A., MaE`ndar, H., and Uustare:, T.Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism. Appl. Surf. Sci. 172, 148 (2001).CrossRefGoogle Scholar
15.Kim, W.D., Hwang, G.W., Kwon, O.S., Kim, S.K., Cho, M., Jeong, D.S., Lee, S.W., Seo, M.H., Hwang, C.S., Min, Y-S., and Cho, Y.J.: Growth characteristics of atomic layer deposited TiO2 thin films on Ru and Si electrodes for memory capacitor applications. J. Electrochem. Soc. 152, C552 (2005).CrossRefGoogle Scholar
16.Kim, S.K., Hoffmann-Eifert, S., Reiners, M., and Waser, R.: Relation between enhancement in growth and thickness-dependent crystallization in ALD TiO2 thin films. J. Electrochem. Soc. 158, D6 (2011).CrossRefGoogle Scholar
17.Pore, V., Ritala, M., Leskelä, M., Saukkonen, T., and Järn, M.: Explosive crystallization in atomic layer deposited mixed titanium oxides. Cryst. Growth Des. 9, 2975 (2009).CrossRefGoogle Scholar
18.López, A., Acosta, D., Martínez, A.I., and Santiago:, J.Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity. Powder Technol. 202, 111 (2010).CrossRefGoogle Scholar
19.Kim, S.K., Choi, G-J., Lee, S.Y., Seo, M., Lee, S.W., Han, J.H., Ahn, H-S., Han, S., and Hwang, C.S.: Al-doped TiO2 films with ultralow leakage currents for next generation DRAM capacitors. Adv. Mater. 20, 1429 (2008).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dielectric behavior related to TiOx phase change to TiO2 in TiOx/Al2O3 nanolaminate thin films
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Dielectric behavior related to TiOx phase change to TiO2 in TiOx/Al2O3 nanolaminate thin films
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Dielectric behavior related to TiOx phase change to TiO2 in TiOx/Al2O3 nanolaminate thin films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *