Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-6mft8 Total loading time: 0.356 Render date: 2021-10-17T03:33:11.193Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells

Published online by Cambridge University Press:  29 January 2019

Jesse S. Ko
Affiliation:
Naval Research Laboratory–National Research Council Postdoctoral Associate, Washington, DC, 20375, USA
Martin D. Donakowski
Affiliation:
Exponent, Inc., 9 Strathmore Road, Natick, Massachusetts, 01760, USA
Megan B. Sassin
Affiliation:
U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, USA
Joseph F. Parker
Affiliation:
U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, USA
Debra R. Rolison
Affiliation:
U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, USA
Jeffrey W. Long*
Affiliation:
U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, USA
*
Address all correspondence to Jeffrey W. Long at jeffrey.long@nrl.navy.mil
Get access

Abstract

We previously demonstrated that electrode architectures comprising nanoscale birnessite-like MnOx affixed to three-dimensional carbon nanofoam (CNF) scaffolds offer performance advantages when used as cathodes in rechargeable zinc-ion cells. To discern chemical and physical changes at the MnOx@CNF electrode upon deep charge/discharge in aqueous Zn2+-containing electrolytes, we deploy electroanalytical methods and ex situ characterization by microscopy, elemental analysis, x-ray photoelectron spectroscopy, x-ray diffraction, and x-ray pair distribution function analyses. Our findings verify that redox processes at the MnOx are accompanied by reversible precipitation/dissolution of crystalline zinc hydroxide sulfate (Zn4(OH)6(SO4xH2O), mediated by the more uniformly reactive electrode structure inherent to the CNF scaffold.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xu, C., Li, B., Du, H., and Kang, F.: Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933935 (2012).CrossRefGoogle ScholarPubMed
2.Guduru, R.K. and Icaza, J.C.: A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 6, 119 (2016).CrossRefGoogle ScholarPubMed
3.Song, M., Tan, H., Chao, D., and Fan, H.J.: Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).CrossRefGoogle Scholar
4.Kundu, D., Adams, B.D., Duffort, V., Hosseini Vajargah, S., and Nazar, L.F.: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).CrossRefGoogle Scholar
5.Soundharrajan, V., Sambandam, B., Kim, S., Alfaruqi, M.H., Yunianto Putro, D., Jo, J., Kim, S., Mathew, V., Sun, Y.-K., and Kim, J.: Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18, 24022410 (2018).CrossRefGoogle ScholarPubMed
6.Kundu, D., Hosseini Vajargah, S., Wan, L., Adams, B., Prendergast, D., and Nazar, L.F.: Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881892 (2018).CrossRefGoogle Scholar
7.Wei, C., Xu, C., Li, B., Du, H., and Kang, F.: Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J. Phys. Chem. Solids 73, 14871491 (2012).CrossRefGoogle Scholar
8.Lee, B., Yoon, C.S., Lee, H.R., Chung, K.Y., Cho, B.W., and Oh, S.H.: Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014).CrossRefGoogle ScholarPubMed
9.Alfaruqi, M.H., Gim, J., Kim, S., Song, J., Pham, D.T., Jo, J., Xiu, Z., Mathew, V., and Kim, J.: A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121125 (2015).CrossRefGoogle Scholar
10.Alfaruqi, M.H., Mathew, V., Gim, J., Kim, S., Song, J., Baboo, J.P., Choi, S.H., and Kim, J.: Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 36093620 (2015).CrossRefGoogle Scholar
11.Lee, B., Lee, H.R., Kim, H., Chung, K.Y., Cho, B.W., and Oh, S.H.: Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 92659268 (2015).CrossRefGoogle ScholarPubMed
12.Alfaruqi, M.H., Gim, J., Kim, S., Song, J., Jo, J., Kim, S., Mathew, V., and Kim, J.: Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 288, 320327 (2015).CrossRefGoogle Scholar
13.Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K.S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K.T., and Liu, J.: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).CrossRefGoogle Scholar
14.Lee, B., Seo, H.R., Lee, H.R., Yoon, C.S., Kim, J.H., Chung, K.Y., Cho, B.W., and Oh, S.H.: Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem. 9, 29482956 (2016).CrossRefGoogle ScholarPubMed
15.Sun, W., Wang, F., Hou, S., Yang, C., Fan, X., Ma, Z., Gao, T., Han, F., Hu, R., Zhu, M., and Wang, C.: Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 97759778 (2017).CrossRefGoogle Scholar
16.Ko, J.S., Sassin, M.B., Parker, J.F., Rolison, D.R., and Long, J.W.: Combining battery-like and pseudocapacitive charge storage in 3D MnOx@carbon electrode architectures for zinc-ion cells. Sustainable Energy Fuels 2, 626636 (2018).CrossRefGoogle Scholar
17.Lytle, J.C., Wallace, J.M., Sassin, M.B., Barrow, A.J., Long, J.W., Dysart, J.L., Renninger, C.H., Saunders, M.P., Brandell, N.L., and Rolison, D.R.: The right kind of interior for multifunctional electrode architectures: carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D. Energy Environ. Sci. 4, 19131925 (2011).CrossRefGoogle Scholar
18.Sassin, M.B., Hoag, C.P., Willis, B.T., Kucko, N.W., Rolison, D.R., and Long, J.W.: Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity. Nanoscale 5, 16491657 (2013).CrossRefGoogle ScholarPubMed
19.Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., and Long, J.W.: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7, 281286 (2007).CrossRefGoogle ScholarPubMed
20.Fischer, A.E., Saunders, M.P., Pettigrew, K.A., Rolison, D.R., and Long, J.W.: Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: correlation of evolving pore-solid structure and electrochemical performance. J. Electrochem. Soc. 155, A246A252 (2008).CrossRefGoogle Scholar
21.Chupas, P.J., Qui, X., Hanson, J.C., Lee, P.L., Grey, C.P., and Billinge, S.J.: Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Cryst. 36, 13421347 (2003).CrossRefGoogle Scholar
22.Hammersley, A.P.: FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl. Cryst. 49, 646652 (2016).CrossRefGoogle Scholar
23.Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Boz˘in, E.S., Bloch, J., Profen, T., and Billinge:, S.J. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter., 19, 335219 (2007).CrossRefGoogle ScholarPubMed
24.Ko, J.S., Sassin, M.B., Rolison, D.R., and Long, J.W.: Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures. Electrochim. Acta 275, 225235 (2018).CrossRefGoogle Scholar
25.Donakowski, M.D., Wallace, J.M., Sassin, M.B., Chapman, K.W., Parker, J.F., Long, J.W., and Rolison, D.R.: Crystal engineering in 3D: converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture. CrystEngComm 18, 60356048 (2016).CrossRefGoogle Scholar
Supplementary material: PDF

Ko et al. supplementary material

Figures S1-S9 and Table S1

Download Ko et al. supplementary material(PDF)
PDF 1 MB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *