Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-7bjf6 Total loading time: 0.17 Render date: 2021-08-01T02:45:04.184Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Bacterial inactivation characteristics of magnesium–calcium–zinc alloys for bone implants

Published online by Cambridge University Press:  30 October 2020

Jaehyoung Son
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77845, USA
Jun Kyun Oh
Affiliation:
Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
Dae Hyun Cho
Affiliation:
Hyundai Steel, 1480 Bukbusaneopno, Songak-eup, Dangjin-si, Chungchungnam-do 31719, Republic of Korea
Mustafa Akbulut
Affiliation:
Department of Materials Science and Engineering and Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
Winfried Teizer
Affiliation:
Department of Physics and Astronomy and Department of Materials Science, Texas A&M University, College Station, TX 77845, USA
Corresponding
Get access

Abstract

The understanding of adhesion and survival behavior of bacterial pathogens on implant surfaces are critical to control and reduce implant-associated infections. Herein, the authors investigate the interactions of Staphylococcus aureus, one of the most prevalent causes of implant infections, with Mg–4Zn–0.5Ca implants. It was found that within 60 min of exposure, 99.1% of adherent bacteria were inactivated. The combination of unique mechanical properties, biodegradation kinetics, and antimicrobial characteristics of Mg–4Zn–0.5Ca alloy makes it a promising candidate for future implant applications.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Both authors contributed equally to this work.

References

Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., and Windhagen, H.: In vivo corrosion of fourmagnesium alloys and the associated bone response. Biomaterials 26, 35573563 (2005).10.1016/j.biomaterials.2004.09.049CrossRefGoogle ScholarPubMed
Phyoungoinern, G.E.J., Brundavanam, S., and Fawcett, D.: Biomedical magnesium alloys: a review of material properties,surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2, 218240 (2012).Google Scholar
Veerachamy, S., Yarlagadda, T., Manivasagam, G., and Yarlagadda, P.K.: Proceedings of the institution of mechanical engineers, part H: journal of engineering in medicine. Proc. Inst. Mech. Eng. H 228, 10831099 (2014).10.1177/0954411914556137CrossRefGoogle Scholar
Parveen, S., Taranum, R., and Mittapally, S.: Metal ions as antibacterial agents. J. Drug Deliv. Ther. 8, 411419 (2018).Google Scholar
Marx, D.E. and Barillo, D.J.: Silverin medicine: the basic science. Burns 40, S9S18 (2014).10.1016/j.burns.2014.09.010CrossRefGoogle Scholar
Song, G.L. and Atrens, A.: Corrosion mechanismsof magnesium alloys. Adv. Eng. Mater. 1, 1133 (1999).10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N3.0.CO;2-N>CrossRefGoogle Scholar
Virtanen, S.: Biodegradable Mg and Mgalloys: corrosion and biocompatibility. Mater. Sci. Eng. B 176, 16001608 (2011).10.1016/j.mseb.2011.05.028CrossRefGoogle Scholar
Oh, J.K., Yegin, Y., Yang, F., Zhang, M., Li, J., Huang, S., Verkhoturov, S.V., Schweikert, E.A., Perez-Lewis, K., Scholar, E.A., Taylor, T.M., Castillo, A., Cisneros-Zevallos, L., Min, Y., and Akbulut, M.: The influence of surface chemistry on the kinetics and thermodynamicsof bacterial adhesion. Sci. Rep. 8, 113 (2018).10.1038/s41598-018-35343-1CrossRefGoogle ScholarPubMed
Oh, J.K., Lu, X., Min, Y., Cisneros-Zevallos, L., and Akbulut, M.: Bacterially antiadhesive, optically transparent surfaces inspired from rice leaves. Appl. Mater. Interfaces 7, 1927419281 (2015).10.1021/acsami.5b05198CrossRefGoogle ScholarPubMed
Jafari, S., Harandi, S.E., and Raman, R.K.S.: A review of stress-corrosion cracking and corrosion fatigue of magnesiumalloys for biodegradable implant applications. JOM 67, 11431153 (2015).10.1007/s11837-015-1366-zCrossRefGoogle Scholar
Helbig, R., Günther, D., Friedrichs, J., Rößler, F., Lasagni, A., and Werner, C.: The impact of structure dimensions on initial bacterial adhesion. Biomater. Sci. 4, 10741078 (2016).10.1039/C6BM00078ACrossRefGoogle ScholarPubMed
He, G., Wu, Y., Zhang, Y., Zhu, Y., Liu, Y., Li, N., Li, M., Zheng, G., He, B., Yin, Q., Zheng, Y., and Mao, C.: Addition of Zn to theternary Mg–Ca–Sr alloys significantly improves their antibacterial properties. J. Mater. Chem. B 3, 66766689 (2015).10.1039/C5TB01319DCrossRefGoogle Scholar
Jiang, W., Wanga, J., Liu, Q., Zhao, W., Jiang, D., and Guo, S.: Low hydrogen release behavior and antibacterial property of Mg-4Zn-xSn alloys. Mater. Lett. 241, 8891 (2019).10.1016/j.matlet.2019.01.048CrossRefGoogle Scholar
Qin, H., Zhao, Y., Cheng, M., Wang, Q., Wang, Q., Wang, J., Jiang, Y., An, Z., and Zhang, X.: Anti-biofilm properties of magnesium metalvia alkaline pH. RSC Adv. 5, 2143421444 (2015).10.1039/C5RA00027KCrossRefGoogle Scholar
Lowy, F.D.: Staphylococcus Aureus Infections. New. Engl. J. Med. 339, 520532 (1998).10.1056/NEJM199808203390806CrossRefGoogle ScholarPubMed
Gorman, S.P. and Scott, E.M.: Antimicrobial activity uses and mechanism of action of glutaraldehyde. J. Appl. Bacteriol. 48, 161190 (1980).10.1111/j.1365-2672.1980.tb01217.xCrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bacterial inactivation characteristics of magnesium–calcium–zinc alloys for bone implants
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bacterial inactivation characteristics of magnesium–calcium–zinc alloys for bone implants
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bacterial inactivation characteristics of magnesium–calcium–zinc alloys for bone implants
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *