Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T03:43:41.169Z Has data issue: false hasContentIssue false

Vertical interconnects of microbumps in 3D integration

Published online by Cambridge University Press:  10 March 2015

Chih Chen
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Taiwan; chih@mail.nctu.edu.tw
Doug Yu
Affiliation:
Taiwan Semiconductor Manufacturing Company, Taiwan; chyu@tsmc.com
Kuan-Neng Chen
Affiliation:
Department of Electronics Engineering, National Chiao Tung University, Taiwan; knchen@mail.nctu.edu.tw
Get access

Abstract

With the electronics packaging industry shifting increasingly to three-dimensional packaging, microbumps have been adopted as the vertical interconnects between chips. Consequently, solder volumes have decreased dramatically, and the solder thickness has reduced to a range between a few and 10 microns. The solder volume of a microbump is approximately two orders of magnitude smaller than a traditional flip-chip joint. In contrast, the thickness of the under-bump metallization (UBM) remains almost the same as that in flip-chip solder joints. Therefore, many issues concerning materials and reliability of microbumps arise. This article reviews the challenges related to microbump materials for vertical interconnects, including transformation of solder joints into intermetallic (IMC) joints, necking or voiding induced by side wetting/diffusion on the circumference of the UBM, formation of porous Cu3Sn IMCs, early electromigration failures caused by specific orientations of Sn grains, and precipitation of plate-like Ag3Sn IMCs. An alternative way of fabricating vertical interconnects using direct Cu-to-Cu bonding is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Patti, R.S., Proc. IEEE 94, 12114 (2006).Google Scholar
Koyanagi, M., Fukushima, T., Tanaka, T., Proc. IEEE 97, 49 (2009).Google Scholar
Lu, J.Q., Proc. IEEE 97, 18 (2009).CrossRefGoogle Scholar
Tu, K.N., Solder Joint Technology (Springer, New York, 2007).CrossRefGoogle Scholar
Chang, Y.W., Chen, C., Chang, T.C., Zhan, C.J., Juang, J.Y., Huang, A.T., Mater. Lett. 137, 136 (2014)Google Scholar
Lin, J.C., Chiou, W.C., Yang, K.F., Chang, H.B., Lin, Y.C., Liao, E.B., Hung, J.P., Lin, Y.L., Tsai, P.H., Shih, Y.C., Wu, T.J., Wu, W.J., Tsai, F.W., Huang, Y.H., Wang, T.Y., Yu, C.L., Chang, C.H., Chen, M.F., Hou, S.Y., Tung, C.H., Jeng, S.P., Yu, D.C.H., Proc. IEEE IEDM 2.1.1 (2010).Google Scholar
Wei, C.C., Yu, C.H., Tung, C.H., Huang, R.Y., Hsieh, C.C., Chiu, C.C., Hsiao, H.Y., Chang, Y.W., Lin, C.K., Liang, Y.C., Chen, C., Yeh, T.C., Lin, L.C., Yu, D.C.H., Proc. IEEE Electron. Compon. Technol. Conf. 706 (2011).Google Scholar
Zhan, C.J., Chuang, C.C., Juang, J.Y., Lu, S.T., Chang, T.C., Proc. IEEE Electron. Compon. Technol. Conf. 1043 (2010).Google Scholar
Bertheau, J., Bleuet, P., Pantel, R., Charbonnier, J., Hodaj, F., Coudrain, P., Hotellier, N., Proc. IEEE Electron. Compon. Technol. Conf. 1127 (2013).Google Scholar
De Vos, J., Bogaerts, L., Buisson, T., Gerets, C., Jamieson, G., Vandersmissen, K., La Manna, A., Beyne, E., Proc. IEEE Electron. Compon. Technol. Conf. 1122 (2013).Google Scholar
Hwang, J., Kim, J., Kwon, W., Kang, U., Cho, T., Kang, S., Proc. IEEE Electron. Compon. Technol. Conf. 1399 (2010).Google Scholar
Yu, A.B., Kumar, A., Ho, S.W., Yin, H.W., Lau, J.H., Houe, K.C., Siang, S.L.P., Zhang, X., Yu, D.Q., Su, N., Bi-Rong, M.C., Ching, J.M., Chun, T.T., Kripesh, V., Lee, C., Huang, J.P., Chiang, J., Chen, S., Chiu, C.H., Chan, C.Y., Chang, C.H., Huang, C.M., Hsiao, C.H., Proc. IEEE Electron. Compon. Technol. Conf. 387 (2008).Google Scholar
Sakuma, K., Andry, P.S., Dang, B., Maria, J., Tsang, C.K., Patel, C., Wright, S.L., Webb, B., Sprogis, E., Kang, S.K., Polastre, R., Horton, R., Knickerbocker, J.U., Proc. IEEE Electron. Compon. Technol. Conf. 627 (2007).Google Scholar
Wright, S.L., Polastre, R., Gan, H., Buchwalter, L.P., Horton, R., Andry, P.S., Sprogis, E., Patel, C., Tsang, C., Knickerbocker, J., Lloyd, J.R., Sharma, A., Sri-Jayantha, M.S., Proc. IEEE Electron. Compon. Technol. Conf. 633 (2006).Google Scholar
Liu, A.A., Kim, H.K., Tu, K.N., Totta, P.A., J. Appl. Phys. 80, 2774 (1996).CrossRefGoogle Scholar
Yeh, Y.T., Chou, C.K., Hsu, Y.C., Chen, C., Tu, K.N., Appl. Phys. Lett. 86, 203504 (2005).Google Scholar
Tu, K.N., J. Appl. Phys. 94, 5451 (2003).Google Scholar
Hsu, Y.C., Chou, C.K., Liu, P.C., Chen, C., Yao, D.J., Chou, T., Tu, K.N., J. Appl. Phys. 98, 033523 (2005).Google Scholar
Lin, Y.M., Zhan, C.J., Juang, J.Y., Lau, J.H., Chen, T.H., Lo, R., Kao, M., Tian, T., Tu, K.N., Proc. IEEE Electron. Compon. Technol. Conf. 351 (2011).Google Scholar
Wang, Y.W., Chae, S.H., Dunne, R., Takahashi, Y., Mawatari, K., Steinmann, P., Bonifield, T., Jiang, T.F., Im, J., Ho, P.S., Proc. IEEE Electron. Compon. Technol. Conf. 319 (2012).Google Scholar
Li, M.Y., Li, Z.L., Xiao, Y., Wang, C.Q., Appl. Phys. Lett. 102, 094104 (2013).Google Scholar
Labie, R., Limaye, P., Lee, K.W., Berry, C.J., Beyne, E., De Wolf, I., Proc. IEEE Electron. Compon. Technol. Conf. 1 (2010).Google Scholar
You, H.Y., Lee, Y.S., Lee, S.K., Kang, J.S., Proc. IEEE Electron. Compon. Technol. Conf. 608 (2011).Google Scholar
Liang, Y.C., Chen, C., Tu, K.N., ECS Solid State Lett. 1, 60 (2012).Google Scholar
Cheng, P.J., Chung, C.M., Pai, T.M., Chen, D.Y., Proc. IEEE Electron. Compon. Technol. Conf. 1618 (2010).Google Scholar
Chan, M.H., Liao, Y.C., Lin, C.T., Chuang, K.W., Huang, H.N., Yeh, C.T., Tseng, W.T., Lai, J.Y., Proc. IEEE Electron. Compon. Technol. Conf. 2163 (2013).Google Scholar
Park, Y.B., Kim, S.H., Park, J.J., Kim, J.B., Son, H.Y., Han, K.W., Oh, J.S., Kim, N.S., Yoo, S., Proc. IEEE Electron. Compon. Technol. Conf. 1988 (2013).Google Scholar
Panchenko, L., Croes, K., De Wolf, I., De Messemaeker, J., Beyne, E., Wolter, K.J., Microelectron. Eng. 117, 26 (2014).Google Scholar
Yang, R.W., Chang, Y.W., Sung, W.C., Chen, C., Mater. Chem. Phys. 134, 340 (2012).CrossRefGoogle Scholar
Chuang, H.Y., Chen, W.M., Shih, W.L., Lai, Y.S., Kao, C.R., Proc. IEEE Electron. Compon. Technol. Conf. 1723 (2011).Google Scholar
Huang, Y.W., Zhan, C.J., Lin, Y.M., Juang, J.Y., Huang, S.Y., Chen, S.M., Fan, C.W., Cheng, R.S., Chao, S.H., Lin, C.K., Lin, J.A., Chen, C., Proc. IEEE Int. Conf. Electron. Packaging 612 (2014).Google Scholar
Kim, H.K., Tu, K.N., Appl. Phys. Lett. 67, 2002 (1995).Google Scholar
Kim, P.G., Jang, J.W., Lee, T.Y., Tu, K.N., J. Appl. Phys. 86, 6746 (1999).Google Scholar
Chiu, W.L., Liu, C.M., Haung, Y.S., Chen, C., Appl. Phys. Lett. 104, 171902 (2014).Google Scholar
Chang, Y.W., Peng, H.Y., Yang, R.W., Chen, C., Chang, T.C., Zhan, C.J., Juang, J.Y., Huang, A.T., Microelectron. Reliab. 53, 41 (2013).Google Scholar
Wei, C.C., Chen, C.F., Liu, P.C., Chen, C., J. Appl. Phys. 105 , 023715 (2009).Google Scholar
Chen, H.Y., Shih, D.Y., Wei, C.C., Tung, C.H., Hsiao, Y.L., Yu, D.C.H., Liang, Y.C., Chen, C., Proc. IEEE Electron. Compon. Technol. Conf. 49 (2013).Google Scholar
Syed, A., Dhandapani, K., Moody, R., Nicholls, L., Kelly, M., Proc. IEEE Electron. Compon. Technol. Conf. 332 (2011).Google Scholar
Wang, T.H., Lin, R.D., Chen, M.F., Chiu, C.C., Chen, S.Y., Yeh, T.C., Lin, L.C., Hou, S.Y., Lin, J.C., Chen, K.H., Jeng, S.P., Yu, D.C.H., Proc. IEEE Electron. Compon. Technol. Conf. 346 (2011).Google Scholar
Lee, C.C., Wang, P.J., Kim, J.S., Proc. IEEE Electron. Compon. Technol. Conf. 648 (2007).Google Scholar
Yeh, D.C., Huntington, H.B., Phys. Rev. Lett. 53, 1469 (1984).Google Scholar
Dyson, B.F., Anthony, T.R., Turnbull, D., J. Appl. Phys. 38, 3408 (1967).Google Scholar
Lu, M.H., Shih, D.Y., Lauro, P., Goldsmith, C., Henderson, D.W., Appl. Phys. Lett. 92, 211909 (2008).Google Scholar
Tu, K.N., Hsiao, H.Y., Chen, C., Microelectron. Reliab. 53, 2 (2013).Google Scholar
Tian, T., Chen, K., Kunz, M., Tamura, N., Zhan, C.J., Chang, T.C., Tu, K.N., Proc. IEEE Electron. Compon. Technol. Conf. 882 (2012).Google Scholar
Wang, Y.W., Lu, K.H., Gupta, V., Stiborek, L., Shirley, D., Chae, S.H., Im, J., Ho, P.S., J. Mater. Res. 27, 1131 (2012).Google Scholar
Jang, J.W., Frear, D.R., Lee, T.Y., Tu, K.N., J. Appl. Phys. 88, 6359 (2000).Google Scholar
Zeng, K., Tu, K.N., J. Mater. Sci. Eng. Rep. 38, 55 (2002).Google Scholar
Chen, K.N., Lee, S.H., Andry, P.S., Tsang, C.K., Topol, A.W., Lin, Y.M., Lu, J.Q., Young, A.M., Ieong, M., Haensch, W., Proc. IEEE IEDM 1 (2006).Google Scholar
Kim, T.H., Howlader, M.M.R., Itoh, T., Suga, T., J. Vac. Sci. Technol. A 21, 449 (2003).Google Scholar
Tan, C.S., Peng, L., Fan, J., Li, H., Gao, S., IEEE Trans. Device Mater. Reliab. 12, 194 (2012).CrossRefGoogle Scholar
Liu, C.M., Lin, H.W., Chu, Y.C., Chen, C., Lyu, D.R., Chen, K.N., Tu, K.N., Scr. Mater. 78–79, 65 (2014).Google Scholar
Agrawal, P.M., Rice, B.M., Thompson, D.L., Surf. Sci. 515, 21 (2002).Google Scholar
Hsiao, H.-Y., Liu, C.-M., Lin, H.-W., Liu, T.-C., Lu, C.-L., Huang, Y.-S., Chen, C., Tu, K.N., Science 336, 1007 (2012).CrossRefGoogle Scholar
Huang, Y.W., Zhan, C.J., Juang, J.Y., Lin, Y.M., Huang, S.Y., Chenl, S.M., Fan, C.W., Cheng, R.S., Chao, S.H., Hsieh, W.L. and Chen, C., Lau, J. H.. Proc. IEEE Electron. Compon. Technol. Conf. 1908 (2014).Google Scholar