Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-30T02:48:34.787Z Has data issue: false hasContentIssue false

Turning Peapods into Double-Walled Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The formation pathway to double-walled carbon nanotubes (DWNTs) from C60 encased within single-walled carbon nanotubes (peapods) is introduced in this article. Onedimensionally arranged C60 molecules coalesce gradually within the nanotube and change the structure to C60 dimers, trimers, tetramers, and so on as intermediates. In addition to these interesting structural transformations visualized in the nanotube space, the nanotube itself is very stable, and this structural stability is very important when using the interior of the nanotube as the reaction field or the space for molecular storage. In terms of optical absorption, the lowest energy absorption band for DWNTs, ∼0.65 eV, shows broadened and downshifted features as compared with that of SWNTs.We expect that this opticalabsorption feature will lead to the use of DWNTs in absorbing devices for optical-fiber communications. The Raman experiments give new information about the frequency of the C-C stretching-mode vibration for nanotubes with diameters of less than ∼1 nm, which shows a decrease in vibration frequency with decreasing tube diameter. This diameter dependence can be explained by an admixture of sp3 character in the C-C interaction. Therefore, the electronic and mechanical properties of nanotubes with diameters of <1 nm are expected to be different from nanotubes of the ∼1-nm-diameter class, and we anticipate that new phenomena will occur in small-diameter tubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, B.W., Monthioux, M., and Luzzi, D.E., Nature 396 (1998) p. 323.CrossRefGoogle Scholar
2. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R. E., Science 273 (1996) p. 483.CrossRefGoogle Scholar
3. Hirahara, K., Bandow, S., Suenaga, K., Kato, H., Okazaki, T., Shinohara, H., and Iijima, S., Phys. Rev. B 64 115429 (2001).Google Scholar
4. Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M., and Iijima, S., Chem. Phys. Lett. 337 (2001) p. 48.CrossRefGoogle Scholar
5. Okada, S., Saito, S., and Oshiyama, A., Phys. Rev. Lett. 86 (2001) p. 3835.CrossRefGoogle Scholar
6. Berber, S., Kwon, Y.-K., and Tomanek, D., Phys. Rev. Lett. 88 185502 (2002).CrossRefGoogle Scholar
7. Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H., and Iijima, S., Phys. Rev. Lett. 85 (2000) p. 5384.CrossRefGoogle Scholar
8. Bandow, S., Hiraoka, T., Yumura, T., Hirahara, K., Shinohara, H., and Iijima, S., Chem. Phys. Lett. 384 (2004) p. 320.CrossRefGoogle Scholar
9. Abe, M., Kataura, H., Kira, H., Kodama, T., Suzuki, S., Achiba, Y., Kato, K., Takata, M., Fujiwara, A., Matsuda, K., and Maniwa, Y., Phys. Rev. B 68 041405 (2003).CrossRefGoogle Scholar
10. Ewels, C.P., Heggie, M.I., and Briddon, P.R., Chem. Phys. Lett. 351 (2002) p. 178.CrossRefGoogle Scholar
11. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., and Achiba, Y., Synth. Met. 103 (1999) p. 2555.CrossRefGoogle Scholar
12. Sakakibara, Y., Tatsuura, S., Kataura, H., Tokumoto, M., and Achiba, Y., Jpn. J. Appl. Phys. 42 (2003) p. L494.CrossRefGoogle Scholar
13. Bandow, S., Chen, G., Eklund, P.C., and Iijima, S., unpublished manuscript.Google Scholar
14. Ichida, M., Mizuno, S., Tani, Y., Saito, Y., and Nakamura, A., J. Phys. Soc. Jpn. 68 (1999) p. 3131.CrossRefGoogle Scholar
15. Kazaoui, S., Minami, N., Yamawaki, H., Aoki, K., Kataura, H., and , Achiba, Phys. Rev. B 62 (2000) p. 1643.CrossRefGoogle Scholar
16. Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Nanotubes (Academic Press, New York, 1996).Google Scholar
17. Ando, T., J. Phys. Soc. Jpn. 66 (1997) p. 1066.CrossRefGoogle Scholar
18. Bandow, S., Chen, G., Sumanasekera, G. U., Gupta, R., Yudasaka, M., Iijima, S., Phys. Rev. B 66 075416 (2002).CrossRefGoogle Scholar
19. Hirahara, K., Bandow, S., Kataura, H., Kociak, M., and Iijima, S. (unpublished manuscript).Google Scholar
20. Jorio, A., Filho, A.G.S., Dresselhaus, G., Dresselhaus, M.S., Righi, A., Matinaga, F.M., Dantas, M.S.S., Pinenta, M.A., Filho, J.M., Li, Z.M., Tang, Z.K., and Saito, R., Chem. Phys. Lett. 351 (2002) p. 27.CrossRefGoogle Scholar
21. Jiang, C., Kempa, K., Zhao, J., Schlecht, U., Kolb, U., Basche, T., Burghard, M., and Mews, A., Phys. Rev. B 66 161404 (2002).CrossRefGoogle Scholar