Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T09:34:09.976Z Has data issue: false hasContentIssue false

Time-Resolved High-Resolution Electron Microscopy of Clusters, Surfaces, and Interfaces

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Nanoscale materials show a variety of interesting physical and chemical properties. Since the properties are mostly determined by mesoscopic- and atomicscale areas of the materials, characterization of nanoscale materials at the atomic level is crucial for understanding the origin of their properties as well as for tailoring them to industrial needs. High-resolution electron microscopy (HREM) is an effective method to observe atomic structures in nanophase materials. The “structure-imaging technique,” originated by Ueda et al., and Cowley and Iijima, contributed much to the development of the method. Innovations are anticipated in (1) three-dimensional analysis of nanophase materials in real space, (2) observation of dynamic phenomena, and (3) extraction of compositional and physical information from nanometer-sized areas. Using the structure-imaging technique, one can observe directly nanometer-scale particles and defect structures such as voids and line and plane defects in crystals, including surfaces and interfaces. There were previously some limitations on the study of the dynamic process on the atomic level since images were captured on films. The recent development of high-sensitivity silicon-integrated-target-television (SIT-TV) cameras has initiated a new stage of HREM.

Our time-resolved-high-resolution-electron-microscopy (TRHREM) system is composed of a 200-kV HREM (JEOL: JEM-2010) equipped with a high-sensitivity SIT-TV camera, various types of dedicated sample holders, an ultrahigh-vacuum (UHV) sample-preparation chamber, and a digital videotape recorder, as partly illustrated in Figure 5. The HREM images at 0.8–1.0-million magnification are recorded on the videotape recorder. In the U.S.-Japan TV system, one “frame image” of 1/30-s time resolution is composed of two interlaced “field images” of 1/60-s time resolution. The digital videotape recorder enables us to output the two “field images” separately from two frame memories.

Type
Nanoscale Characterization of Materials
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ueda, N., Kobayashi, T., Suito, E., Harada, Y., and Watanabe, M., in Proc. 7th Int. Cong, E.M., vol. 1, edited by Favard, P. (Societé Francaise de Microscopie Electronique, Paris, 1970) p. 23.Google Scholar
2.Cowley, J.M. and Iijima, S., Z. Naturforsch 27 (1972) p. 445.CrossRefGoogle Scholar
3.Hashimoto, H., Yokota, Y., Takai, T., Endo, H., and Kumao, A., Chem. Scripta 14 (1979) p. 125.Google Scholar
4.Iijima, S. and Ichihashi, S., Jpn. J. Appl. Phys. 24 (1985) p. L126.Google Scholar
5.Bovin, J.O., Wallenberg, L.R., and Smith, D.J., Nature 317 (1985) p. 47.CrossRefGoogle Scholar
6.Tanaka, N., Kimata, H., and Kizuka, T., J. Electron Microsc. 45 (1996) p. 113.CrossRefGoogle Scholar
7.Ayraut, G. and Ehrlich, G., Phys. Rev. Lett. 31 (1973) p. 1407.Google Scholar
8.Ganz, E., Theiss, S.K., Hwang, I-S., and Golovchenko, J., Phys. Rev. Lett. 68 (1992) p. 1567.CrossRefGoogle Scholar
9.Mo, Y.M., Phys. Rev. Lett. 71 (1993) p. 2423.CrossRefGoogle Scholar
10.Pohl, D.W. and Moller, R., Rev. Sci. Instrum. 59 (1988) p. 840.CrossRefGoogle Scholar
11.Kizuka, T. and Tanaka, N., Philos. Mag. Lett. 69 (1994) p. 135.CrossRefGoogle Scholar
12.Tanaka, N., Kimata, H., and Kizuka, T., Surf. Rev. Lett. 3 (1996) p. 955.CrossRefGoogle Scholar
13.Tanaka, N., Kizuka, T., Naruse, M., and Yanagisawa, T., in Proc. 13th Int. Cong. E.M., vol. 2A, edited by Jouffrey, B. (Les Editions de Physique Les Ulis, Paris, 1994) p. 381.Google Scholar
14.Kimoto, K., Tanaka, N., and Mihama, K., J. Electron Microsc. 38 (1989) p. 165.Google Scholar
15.Tanaka, N., Nagao, M., and Mihama, K., Ultramicroscopy 25 (1988) p. 241.CrossRefGoogle Scholar
16.Konno, T.J. and Sinclair, B., Philos. Mag. B71 (1995) p. 179.CrossRefGoogle Scholar
17.Sugawara, A., Kikukawa, T., and Nittono, O., Mater. Sci. Eng. A179/180 (1994) p. 355.CrossRefGoogle Scholar
18.Bian, B., Ohkubo, T., and Hirotsu, Y., J. Electron Microsc. 44 (1995) p. 182.Google Scholar
19.Witten, T.A. and Sander, L.M., Phys. Rev. Lett. 47 (1981) p. 1400.CrossRefGoogle Scholar
20.Buffat, P. and Borel, J., Phys. Rev. A13 (1976) p. 2287.CrossRefGoogle Scholar
21.Tanaka, N., Kawahara, M., and Kizuka, T., in Proc. Annual Meeting, Phys. Soc. Jpn., vol. 2 (Buturi-Gakkai, Tokyo, October 1996) p. 650.Google Scholar
22.“Grain Boundary Structure and Its Related Phenomena,” edited by Karashima, S., supplement to Trans. J.J.M. 27 (1986).Google Scholar
23.Kizuka, T. and Tanaka, N., Mater. Sci. Forum 233/234 (1997) p. 405.Google Scholar
24.Duffy, D.M. and Tasker, P.W., Philos. Mag. A47 (1983) p. 817.CrossRefGoogle Scholar
25.Albrecht, T.R., Akamine, S., Carver, T.E., and Quate, C.F., J. Vac. Sci. Technol. A 8 (1990) p. 3386.CrossRefGoogle Scholar
26.Eigler, D.M. and Shweizer, E.K., Nature 344 (1990) p. 524.CrossRefGoogle Scholar
27.Mochel, M.E., Humphreys, C.J., Eades, J.A., Mochel, J.M., and Petford, A.M., Appl. Phys. Lett. 42 (1983) p. 392.CrossRefGoogle Scholar
28.Kizuka, T. and Tanaka, N., Philos. Mag. A71 (1995) p. 631.CrossRefGoogle Scholar
29.Kizuka, T. and Tanaka, N., in Proc. 54th Annual Meeting of MSA, edited by Bailey, G.W. (San Francisco Press, San Francisco, 1996) p. 980.Google Scholar
30.Mate, C.M., MacClelland, G.M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett. 59 (1987) p. 1942.CrossRefGoogle Scholar
31.Kizuka, T., Yamada, K., Deguchi, S., Naruse, M., and Tanaka, N., Phys. Rev. B 55 (1997) p. R7398.CrossRefGoogle Scholar
32.Kizuka, T., Yamada, K., Deguchi, S., Naruse, M., and Tanaka, N., J. Electron Microsc. 46 (2) (1997) p. 151.CrossRefGoogle Scholar
33. For example, see Kamino, T. and Saka, H., Microanal. Microstruc. 4 (1993) p. 127.CrossRefGoogle Scholar
34. For example, see Marks, L.D., Kubozoe, M., Tomita, M., Ukiana, M., Furutsu, T., and Matsui, I., Proc. 46th E.M.S.A. Meeting (1988) p. 658.Google Scholar
35.Mooney, P.E., Fan, G.Y., Meyer, C.E., Truong, K.V., Bui, D.B., and Krivanek, O., in Proc. 12th Int. Cong., E.M., vol. 1 (San Francisco Press, San Francisco, 1990) p. 164.Google Scholar
36.Mori, N., Oikawa, T., Katoh, T., Miyahara, J., and Harada, Y., Ultramicroscopy 25 (1988) p. 195.CrossRefGoogle Scholar
37.Tonomura, A., Allard, L.H., Pozzi, G., Joy, D.C., and Ono, Y.A., eds., Electron Holography (North Holland, Amsterdam, 1995).Google ScholarPubMed
38.Kizuka, T. and Tanaka, N., in Proc. 13th Cong., E.M., vol. 2A, edited by Jouffrey, B. (Les Editions de Physique Les Ulis, Paris, 1994) p. 369.Google Scholar
39.Kizuka, T. and Tanaka, N., Surf. Rev. Lett. 3 (1996) p. 1187.CrossRefGoogle Scholar
40.Kizuka, T. and Tanaka, N., in Proc. 54th Annual Meeting of MSA, edited by Bailey, G.W. (San Francisco Press, San Francisco, 1996) p. 692.Google Scholar
41.Kizuka, T. and Tanaka, N., Surf. Sci. (1997) in print.Google Scholar