Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T22:05:26.190Z Has data issue: false hasContentIssue false

Surface functionalization and biological applications of CVD diamond

Published online by Cambridge University Press:  12 June 2014

Sabine Szunerits
Affiliation:
University Lille 1, Interdisciplinary Research Institute, Parc de la Haute Borne, France; sabine.szunerits@iri.univ-lille1.fr
Christoph E. Nebel
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Freiburg, Germany; christoph.nebel@iaf.fraunhofer.de
Robert J. Hamers
Affiliation:
Department of Chemistry, University of Wisconsin-Madison, USA; rjhamers@wisc.edu
Get access

Abstract

Recent advances in biotechnology have fueled a need for well-defined, highly stable interfaces modified with a variety of biomolecules. Diamond is a particularly attractive material for biological applications because of its chemical stability and good biocompatibility. Since diamond can be made conductive by doping, it is also of interest for a variety of electrically based biological sensing applications that achieve improved performance through selective biological modification. Recent developments of diamond growth by chemical vapor deposition have enabled the preparation of large-area synthetic diamond films on different substrates at a reasonable cost. An as-grown diamond film is terminated by hydrogen on the surface and shows hydrophobic wetting characteristics, besides chemical inertness. This has created problems for attachment of many biomolecules that are inherently hydrophilic. The challenge to make diamond useful for in vivo applications thus lies in covalently linking biomolecules to such surfaces. Several breakthroughs have been accomplished over the last decade, and attaching biomolecules to diamond in a controlled and reproducible way can nowadays be achieved in several different manners and is the focus of this article.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nebel, C.E., Semicond. Sci. Technol. 18, S1 (2003).CrossRefGoogle Scholar
Narayan, R., Diamond-Based Materials for Biomedical Applications (Woodhead Publishing, Cambridge, UK, 2013).Google Scholar
Boukherroub, R., Curr. Opin. Solid State Mater. Sci. 9, 66 (2005).Google Scholar
Szunerits, S., Boukherroub, R., Diamond-Based Materials for Biomedical Applications, Narayan, R., Ed. (Woodhead Publishing, Cambridge, UK, 2013), pp. 2547.Google Scholar
Thoms, B.D., Owens, M.S., Butler, J.E., Spiro, C., App. Phys. Lett. 65, 2957 (1994).Google Scholar
Shin, D., Rezek, B., Tokuda, N., Takeuchi, D., Watanabe, H., Nakamura, T., Yamamoto, T., Nebel, C.E., Phys. Status Solidi A 203, 3245 (2006).CrossRefGoogle Scholar
Kuo, T.-C., McCreery, R.L., Swain, G.M., Electrochem. Solid-State Lett. 2, 288 (1999).Google Scholar
Uetsuka, H., Shin, D., Tokuda, N., Saeki, K., Nebel, C.E., Langmuir 23, 3466 (2007).CrossRefGoogle Scholar
Zhong, Y.L., Ng, W., Yang, J.-X., Loh, K.P., J. Am. Chem. Soc. 131, 18293 (2009).Google Scholar
Andrieux, C.P., Pinson, J., J. Am. Chem. Soc. 125, 14801 (2003).Google Scholar
Yang, W., Baker, S.E., Butler, J.E., Lee, C.-S., Russell, J.N., Shang, L., Sun, B., Hamers, R.J., Chem. Mater. 17, 938 (2005).Google Scholar
Kulisch, W., Popov, C., Gilliland, D., Ceccone, G., Reithmaier, J.P., Rossi, F., Surf. Coat. Technol. 206, 667 (2011).Google Scholar
Wenmackers, S., Vermeeren, V., vandeVen, M., Ameloot, M., Bijnens, N., Haenen, K., Michiels, L., Wagner, P., Phys. Status Solidi A 206, 391 (2009).Google Scholar
Pinson, J., Podvorica, F., Chem. Soc. Rev. 34, 429 (2005).Google Scholar
Lud, S.Q., Steenackers, M., Jordan, R., Bruno, P., Gruen, D.M., Feulner, P., Garrido, J.A., Stutzmann, M., J. Am. Chem. Soc. 128, 16884 (2006).Google Scholar
Shul, G., Actis, P., Marcus, B., Opallo, M., Boukherroub, R., Szunerits, S., Diam. Relat. Mater. 17, 1394 (2007).CrossRefGoogle Scholar
Zhong, Y.L., Loh, K.P., Midya, A., Chen, Z.-K., Chem. Mater. 20, 3137 (2008).Google Scholar
Takahashi, K., Tanga, M., Takai, O., Okamura, H., Diam. Relat. Mater. 12, 572 (2003).Google Scholar
Miller, J.B., Brown, D.W., Diam. Relat. Mater. 4, 435 (1995).CrossRefGoogle Scholar
Miller, J.B., Brown, D.W., Langmuir 12, 5809 (1996).Google Scholar
Ando, T., Nishitani-Gamo, M., Rawles, R.E., Yamamoto, K., Kamo, M., Sato, Y., Diam. Relat. Mater. 5, 1136 (1996).CrossRefGoogle Scholar
Yang, W., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A., Gerbi, J.E., Gruen, D.M., Knickerbocker, T.L., Lasseter, T.L., Russell, J.N., Smith, L.M., Harmers, R.J., Nat. Mater. 1, 253 (2002).Google Scholar
Zhong, Y.-L., Chong, K.F., May, P.W., Chen, Z.-K., Loh, K.P., Langmuir 23, 5824 (2007).Google Scholar
Rezek, B., Shin, D., Nakamura, Y., Nebel, C.E., J. Am. Chem. Soc. 128, 3884 (2006).Google Scholar
Knickerbocker, T., Strother, T., Schwartz, M.P., Russell, J.N., Butler, J., Smith, L.M., Hamers, R.J., Langmuir 19, 1938 (2003).Google Scholar
Lasseter, T.L., Clare, B.H., Abbott, N.L., Hamers, R.J., J. Am. Chem. Soc. 126, 10220 (2004).CrossRefGoogle Scholar
Stavis, C., Clare, T.L., Butler, J.E., Radadia, A.D., Carr, R., Zeng, H., King, W.P., Carlisle, J.A., Aksimentiev, A., Bashir, R., Hamers, R.J., Proc. Natl. Acad. Sci. U.S.A. 108, 983 (2011).Google Scholar
Härtl, A., Schmich, E., Garrido, J.A., Hernando, J., Catharino, S.C.R., Walter, S., Feulber, P., Kromka, A., Steinmuller, D., Stutzmann, M., Nat. Mater. 3, 736 (2004).Google Scholar
Zhang, G.-J., Song, K.-S., Nakamura, Y., Ueno, T., Funatsu, T., Ohdomari, I., Kawarada, H., Langmuir 22, 3728 (2006).CrossRefGoogle Scholar
Szunerits, S., Jama, C., Coffinier, Y., Marcus, B., Delabouglise, D., Boukherroub, R., Electrochem. Commun. 8, 1185 (2006).Google Scholar
Coffinier, Y., Szunerits, S., Jama, C., Desmet, R., Melnyk, O., Marcus, B., Gengembre, L., Payen, E., Delabouglise, D., Boukherroub, R., Langmuir 23, 4494 (2007).Google Scholar
Wang, Q., Kromka, A., Houdkova, J., Babchenko, O., Rezek, B., Li, M., Boukherroub, R., Szunerits, S., Langmuir 28, 587 (2012).Google Scholar
Szunerits, S., Boukherroub, R., J. Solid-State Electrochem. 12, 1205 (2008).CrossRefGoogle Scholar
Klausner, F., Ghodbane, S., Boukherroub, R., Szunerits, S., Steinmueller-Nethel, D., Bertel, E., Memmel, N., Diam. Relat. Mater. 19, 474 (2009).Google Scholar
Ghodbane, S., Haensel, T., Coffinier, Y., Szunerits, S., Steinmüller-Nethl, D., Boukherroub, R., Imad-Uddin Ahmed, S., Schaefer, J.A., Langmuir 26, 18798 (2010).Google Scholar
Wang, M., Simon, N., Decorse-Pascanut, C., Bouttemy, M., Etcheberry, A., Li, M., Boukherroub, R., Szunerits, S., Electrochim. Acta 54, 5818 (2009).CrossRefGoogle Scholar
Boukherroub, R., Wallart, X., Szunerits, S., Marcus, B., Bouvier, P., Mermoux, M., Electrochem. Commun. 7, 937 (2005).Google Scholar
Wang, M., Simon, N., Charrier, G., Bouttemy, M., Etcheberry, A., Li, M., Boukherroub, R., Szunerits, S., Electrochem. Commun. 12, 351 (2010).Google Scholar
Coffinier, Y., Szunerits, S., Marcus, B., Desmet, R., Melnyk, O., Gengembre, L., Payen, E., Delabouglise, D., Boukherroub, R., Diam. Relat. Mater. 16, 892 (2007).CrossRefGoogle Scholar
Coffinier, Y., Galopin, E., Szunerits, S., Boukherroub, R., J. Mater. Chem. 20, 10671 (2010).Google Scholar
Szunerits, S., Shirahata, N., Actis, P., Nakanishi, J., Boukherroub, R., Chem. Commun. 27, 2793 (2007).Google Scholar
Marcon, L., Wang, M., Coffinier, Y., Le Normand, F., Melnyk, O., Boukherroub, R., Szunerits, S., Langmuir 26, 1075 (2010).Google Scholar
Szunerits, S., Niedziółka-Jönsson, J., Boukherroub, R., Woisel, P., Baumann, J.-S., Siriwardena, A., Anal. Chem. 82, 8203 (2010).CrossRefGoogle Scholar
Hoyle, C.E., Lowe, A.B., Bowman, C.N., Chem. Soc. Rev. 39, 1355 (2010).Google Scholar
Lowe, A.B., Hoyle, C.E., Bowman, C.N., J. Mater. Chem. 20, 4745 (2010).Google Scholar
Caipa Campos, M.A., Paulusse, J.M.J., Zuilhof, H., Chem. Commun. 46, 5512 (2010).Google Scholar
Hensarling, R.M., Doughty, V.A., Chan, J.W., Patton, D.L., J. Am. Chem. Soc. 131, 14673 (2009).Google Scholar
Mezian, D., Barras, A., Kromka, A., Houdkova, J., Boukherroub, R., Szunerits, S., Anal. Chem. 84, 194 (2012).CrossRefGoogle Scholar
Hoffmann, R., Kriele, A., Obloh, H., Tokuda, N., Smirnov, W., Yang, N., Nebel, C.E., Biomaterials 32, 7325 (2011).Google Scholar
Yang, N., Uetsuka, H., Nebel, C.E., Adv. Funct. Mater. 19, 887 (2009).CrossRefGoogle Scholar
Szunerits, S., Coffinier, Y., Galopin, E., Brenner, J., Boukherroub, R., Electrochem. Commun. 12, 438 (2010).Google Scholar
Barras, A., Martin, F.A., Bande, O., Baumann, J.S., Ghigo, J.-M., Boukherroub, R., Beloin, C., Siriwardena, A., Szunerits, S., Nanoscale 5, 2307 (2013).Google Scholar
Barras, A., Szunerits, S., Marcon, L., Monfilliette-Dupont, N., Boukherroub, R., Langmuir 26, 13168 (2010).Google Scholar
Nebel, C.E., Yang, N., Uetsuka, H., Osawa, E., Tokuda, N., Williams, O., Diam. Relat. Mater. 18, 910 (2009).Google Scholar
Subramanian, P., Mortorina, A., Yeap, W.S., Haenen, K., Coffinier, Y., Zaitsev, V., Niedziolka-Jonsson, J., Boukherroub, R., Szunerits, S., Analyst 139 (7), 1726 (2014).CrossRefGoogle Scholar
Yang, N., Smirnov, W., Nebel, C.E., Electrochem. Commun. 27, 89 (2013).Google Scholar
Krueger, A., J. Mater. Chem. 21, 12571 (2011).Google Scholar
Khanal, M.M., Vausellin, T.T., Barras, A.A., Bande, O.O., Turcheniuk, T.K., Benazza, M.M., Zaitsev, V., Teodurescu, C.M., Boukherroub, R., Siriwardena, A., Dubuisson, J., Szunerits, S., ACS Appl. Mater. Interfaces 5, 12488 (2013).CrossRefGoogle Scholar
Markovic, N.M., Adzic, R.R., Cahan, B.D., Yeager, E.B., J. Electroanal. Chem. 377, 249 (1994).Google Scholar
Martin, R., Alvaro, M., Herance, J.R., Garcia, H., ACS Nano 4, 65 (2010).Google Scholar
Girard, H.A., Petit, T., Perruchas, S., Gacoin, T., Gesset, C., Arnault, J.C., Bergonzo, P., Phys. Chem. Chem. Phys. 13, 11517 (2011).Google Scholar
Rojas, S., Gispert, J.D., Martín, R., Abad, S., Menchón, C., Pareto, D., Víctor, V.M., Álvaro, M., García, H., Herance, J.R., ACS Nano 5, 5552 (2011).Google Scholar