Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T23:57:03.216Z Has data issue: false hasContentIssue false

Supramolecular Aufbau: Folded Polymers as Building Blocks for Adaptive Organic Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The design of inorganic and organic solids with novel structures and properties has long been the object of materials research. The classical examples of porous materials (i.e., involving reversible guest passage) are zeolites. First discovered in the mid-1700s, zeolites are hydrated, crystalline aluminosilicates that organize into stable, discrete frameworks. Basic structures employ tetrahedral atoms (silicon or aluminum) bridged by oxygen atoms, where each oxygen is shared between two metalloid tetrahedra. Resulting covalent lattices can be neutral or negatively charged (as a result of bridging oxides) and often employ alkali metal or alkalineearth counterions. As a consequence of this ordered structure, zeolites both benefit from and are limited by their highly geometrical nature: their rigid structures are inherently robust, yet they are difficult to process. In addition, while natural and unnatural zeolites have been characterized, harsh synthetic conditions are common to both and lead to limitations in design and processability. Even so, these impediments have not prevented constructing a myriad of architectures on zeolite host lattices. Strengths and weaknesses aside, zeolites demonstrate a major objective of materials chemistry: the ability to manifest macroscopic physical properties based on embedded microscopic structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, M.E. and Lobo, R.F., Chem. Mater. 4 (1992) p. 756.CrossRefGoogle Scholar
2. Moore, J.S., Curr. Opin. Colloid Interface Sci. 4 (1999) p. 108.CrossRefGoogle Scholar
3. Zimmerman, N., Moore, J.S., and Zimmerman, S.C., Chem. Ind. 15 (1998) p. 604.Google Scholar
4. Russell, V.A., Evans, C.A., Li, W., and Ward, M.D., Science 276 (1997) p. 575.CrossRefGoogle Scholar
5. Swift, J.A., Pivovar, A.M., Reynolds, A.M., and Ward, M.D., J. Am. Chem. Soc. 120 (1998) p. 5887.CrossRefGoogle Scholar
6. van Nostrum, C.F., Adv. Mater. 8 (1996) p. 1027.CrossRefGoogle Scholar
7. Engelkamp, H., Middlebeek, S., and Nolte, R.J.M., Science 284 (1999) p. 785.CrossRefGoogle Scholar
8. Aoyagi, M., Biradha, K., and Fujita, M., J. Am. Chem. Soc. 121 (1999) p. 7457.CrossRefGoogle Scholar
9. Kim, O.-K., Choi, L.-S., Zhang, H.-Y., He, X.-H., and Shih, Y.-H., J. Am. Chem. Soc. 118 (1996) p. 12220.CrossRefGoogle Scholar
10. Choi, L.-S. and Kim, O.-K., Macromolecules 31 (1998) p. 9406.CrossRefGoogle Scholar
11. Young, J.K. and Moore, J.S., in Modern Acetylene Chemistry, edited by Stang, P.J. and Diederich, F. (VCH, Weinheim, 1995) p. 415.CrossRefGoogle Scholar
12. Shetty, A.S., Zhang, J., and Moore, J.S., J. Am. Chem. Soc. 118 (1996) p. 1019.CrossRefGoogle Scholar
13. Z.Wu and Moore, J.S., Angew. Chem., Int. Ed. Engl. 35 (1996) p. 297.Google Scholar
14. Zhang, J. and Moore, J.S., J. Am. Chem. Soc. 114 (1992) p. 9701.CrossRefGoogle Scholar
15. Zhang, J., Pesak, D.J., Ludwick, J.L., and Moore, J.S., J. Am. Chem. Soc. 116 (1994) p. 4227.CrossRefGoogle Scholar
16. Moore, J.S., Acc. Chem. Res. 30 (1997) p. 402.CrossRefGoogle Scholar
17. Gellman, S.H., Acc. Chem. Res. 31 (1998) p. 173.CrossRefGoogle Scholar
18. Nelson, J.C., Saven, J.G., Moore, J.S., and Wolynes, P.G., Science 277 (1997) p. 1793.CrossRefGoogle Scholar
19. Nguyen, J.Q. and Iverson, B.L., J. Am. Chem. Soc. 121 (1999) p. 2639.CrossRefGoogle Scholar
20. Appella, D.H., Christianson, L.A., Karle, I.L., Powell, D.R., and Gellman, S.H., J. Am. Chem. Soc. 121 (1999) p. 6206.CrossRefGoogle Scholar
21. Appella, D.H., Christianson, L.A., Klein, D.R., Richards, M.R., Powell, D.R., and Gellman, S.H., J. Am. Chem. Soc. 121 (1999) p. 7574.CrossRefGoogle Scholar
22. Moore, J.S., Nelson, J.C., and Prince, R.B., in Conjugated Oligomers, Polymers, and Dendrimers: From Polyacetylene to DNA, Franqui Scientific Library, Vol. 4, edited by Bredas, J.-L. (De Boeck & Larcier, Paris, 1999) p. 263.Google Scholar
23. Dill, K.A. and Stigter, D., in Protein Stability, Advances in Protein Chemistry, Vol. 46, edited by Eisenberg, D.S. and Richards, F.M. (Academic Press, New York, 1995) p. 59.CrossRefGoogle ScholarPubMed
24. Prince, R.B., Okada, T., and Moore, J.S., Angew. Chem. Int. Ed. 38 (1999) p. 233.3.0.CO;2-Y>CrossRefGoogle Scholar
25. M Gin, S., Yokozawa, T., Prince, R.B., and Moore, J.S., J. Am. Chem. Soc. 121 (1999) p. 2643.CrossRefGoogle Scholar
26. Prince, R.B., Brunsveld, L., Meijer, E.W., and Moore, J.S., Angew. Chem. Int. Ed. 39 (2000) p. 228.3.0.CO;2-B>CrossRefGoogle Scholar
27. Lahiri, S., Thompson, J., and Moore, J.S., unpublished manuscript.Google Scholar
28. Venkataraman, D., Lee, S., Zhang, J., and Moore, J.S., Nature 371 (1994) p. 591.CrossRefGoogle Scholar
29. Pesak, D.J. and Moore, J.S., Angew. Chem., Int. Ed. Engl. 36 (1997) p. 1636.CrossRefGoogle Scholar
30. Meijer, E.W., in Conjugated Oligomers, Polymers, and Dendrimers: From Polyacetylene to DNA, Franqui Scientific Library, Vol. 4, edited by Bredas, J.-L. (De Boeck & Larcier, Paris, 1999) p. 317.Google Scholar
31. Mindyuk, O.Y., Stetzer, M.R., Heiney, P.A., Nelson, J.C., and Moore, J.S., Adv. Mater. 10 (1998) p. 1363.3.0.CO;2-V>CrossRefGoogle Scholar
32. Mindyuk, O.Y., Stetzer, M.R., Gidalevitz, D., Heiney, P.A., Nelson, J.C., and Moore, J.S., Langmuir 15 (1999) p. 6897.CrossRefGoogle Scholar
33. Prince, R.B., Brunsveld, L., Meijer, E.W., and Moore, J.S. (unpublished manuscript).Google Scholar
34. Lovinger, A.J., Nuckolls, C., and Katz, T.J., J. Am. Chem. Soc. 120 (1998) p. 264.CrossRefGoogle Scholar
35. Nuckolls, C. and Katz, T.J., J. Am. Chem. Soc. 120 (1998) p. 9541.CrossRefGoogle Scholar
36. Nuckolls, C., Katz, T.J., Katz, G., Collings, P.J., and Castellanos, L., J. Am. Chem. Soc. 121 (1999) p. 79.CrossRefGoogle Scholar
37. Grubbs, R.H. and Kratz, D., Chem. Ber. 126 (1993) p. 149.CrossRefGoogle Scholar
38. Blake, A.J., Cooke, P.A., Doyle, K.J., Gair, S., and Simpkins, N.S., Tetrahedron Lett. 39 (1998) p. 9093.CrossRefGoogle Scholar
39. Williams, D.J., Colquhoun, H.M., and O'Mahoney, C.A., Chem. Commun. (1994) p. 1643.CrossRefGoogle Scholar
40. Prince, R.B., Barnes, S.A., and Moore, J.S., “Foldamer-based Molecular Recognition,” J. Am. Chem. Soc. in press (2000).CrossRefGoogle Scholar
41. Kageyama, K., Tamazawa, J., and Aida, T., Science 285 (1999) p. 2113.CrossRefGoogle Scholar