Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-20T00:47:05.605Z Has data issue: false hasContentIssue false

Substrates and epitaxial deposition processes for Group III-nitride thin films and power device heterostructures

Published online by Cambridge University Press:  08 May 2015

Robert F. Davis*
Affiliation:
Carnegie Mellon University;rfd@andrew.cmu.edu
Get access

Abstract

The methodologies, results, and status of investigations for the development of solvothermal, vapor-phase transport, and solution techniques for bulk crystal growth of large diameter GaN and AlN crystals are presented. This work is being driven by (1) the anticipated need for the initial homoepitaxy of ever-thicker GaN films having very low densities of both threading dislocations and unintentionally introduced, electronically important impurities for devices operating at high and very high load levels; (2) the desire to move from lateral to vertical device structures; and (3) recent results of near theoretical breakdown behavior and near system-level performance in vertical GaN diodes grown on GaN substrates. The choice of the substrate dictates the technique and process routes for the growth of Group III-nitride-based thin films and material device structures. Organometallic vapor-phase epitaxy is the commercial process route of choice for the growth of Group III-nitride films. A review of the precursor gases used in this technique, their stability in the growth reactor and reactivity with nitrogen-containing gases, and the choice of diluent for the growth of films of different nitrides is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baliga, B.J., IEEE Electron Device Lett. 10, 455 (1989).CrossRefGoogle Scholar
Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L., IEEE Trans. Microwave Theory Tech. 60, 1764 (2012).CrossRefGoogle Scholar
Wu, Y.F., Proc. of 2014 IEEE Workshop Wide Bandgap Power Devices Appl. (2014), p. 30.CrossRefGoogle Scholar
Lidow, A., Strydom, J., de Rooij, M., Reusch, D., 2nd ed. GaN Transistors for Efficient Power Conversion (Wiley, New York, 2014).CrossRefGoogle Scholar
Disney, D., Nie, H., Edwards, A., Bour, D., Shah, H., Kizilyalli, I.C., Proc. 25th Int. Symp. Power Semicond. Devices (2013), p. 59.Google Scholar
Cich, M.J., Aldaz, R.I., Chakraborty, A., David, A., Grundmann, M.J., Tyagi, A., Zhang, M., Steranka, F.M., Krames, M.R., Appl. Phys. Lett. 101, 223509 (2012).CrossRefGoogle Scholar
D’Evelyn, M.P., Ehrentraut, D., Jiang, W., Kamber, D.S., Downey, B.C., Pakalapati, R.T., Yoo, H.-D., ECS Trans. 58, 287 (2013).CrossRefGoogle Scholar
Jiang, W., Ehrentraut, D., Downey, B.C., Kamber, D.S., Pakalapati, R.T., Yoo, H.D., D’Evelyn, M.P., J. Cryst. Growth 403, 18 (2014).CrossRefGoogle Scholar
D’Evelyn, M.P., Hong, H.C., Park, D.-S., Lu, H., Kaminsky, E., Melkote, R.R., Perlin, P., Lesczynski, M., Porowski, S., Molnar, R.J., J. Cryst. Growth 300, 11 (2007).CrossRefGoogle Scholar
Dwiliński, R., Doradziński, R., Garczyński, J., Sierzputowski, L.P., Puchalski, A., Kanbara, Y., Yagi, K., Minakuchi, H., Hayashi, H., J. Cryst. Growth 310, 3911 (2008).CrossRefGoogle Scholar
Dwiliński, R., Doradziński, R., Garczyński, J., Sierzputowski, L., Kucharski, R., Zając, M., Rudziński, M., Kudrawiec, R., Serafińczuk, J., Strupiński, W., J. Cryst. Growth 312, 2499 (2010).CrossRefGoogle Scholar
Uchida, S., Agatsuma, S., Hashizu, T., Yamamoto, T., Ikeda, M., IEDM Tech. Dig. 1 (2006).Google Scholar
Fujito, K., Kubo, S., Nagaoka, H., Mochizuki, T., Namita, H., Nagao, S., J. Cryst. Growth 311, 3011 (2009).CrossRefGoogle Scholar
Paskova, T., Evans, K.R., IEEE J. Sel. Top. Quantum Electron. 15, 1041 (2009).CrossRefGoogle Scholar
Miyanaga, M., Mizuhara, N., Fujiwara, S., Shimazu, M., Nakahata, H., Kawase, T., J. Cryst. Growth 300, 45 (2007).CrossRefGoogle Scholar
Kumagai, Y., Yamane, T., Koukitu, A., J. Cryst. Growth 281, 62 (2005).CrossRefGoogle Scholar
Dalmau, R., Moody, B., Schlesser, R., Mita, S., Xie, J., Feneberg, M., Neuschl, B., Thonke, K., Collazo, R., Rice, A., Tweedie, J., Sitar, Z., J. Electrochem. Soc. 158, H530 (2011).CrossRefGoogle Scholar
Yano, M., Okamoto, M., Yap, Y.K., Yoshimura, M., Mori, Y., Sasaki, T., Diam. Relat. Mater. 9, 512 (2000).CrossRefGoogle Scholar
Kamei, K., Inoue, S., Shirai, Y., Tanaka, T., Okada, N., Yauchi, A., Phys. Status Solidi A 203, 1720 (2006).CrossRefGoogle Scholar
Grandusky, J.R., Chen, J., Gibb, S.R., Mendrick, M.C., Moe, C.G., Rodak, L., Garrett, G.A., Wraback, M., Schowalter, L.J., Appl. Phys. Express 6 032101 (2013).CrossRefGoogle Scholar
Strite, S., Lin, M.E., Morkoç, H., Thin Solid Films 231, 197 (1993).CrossRefGoogle Scholar
Akasaki, I., Amano, H., in Semiconductors and Semimetals, Stringfellow, G.B., Craford, M.G., Willardson, R.K., Weber, E.R., Eds. (Academic Press, New York, 1997), vol. 48 p. 357.Google Scholar
DenBaars, S.P., Keller, S., in Semiconductors and Semimetals, Pancove, J.I., Moustakas, T. D., Eds. (Academic Press, New York, 1998), vol. 50 p. 11.Google Scholar
Ambacher, O., J. Phys. D: Appl. Phys. 32, 2653 (1998).CrossRefGoogle Scholar
Briot, O., in Group III Nitride Semiconductor Compounds: Physics and Applications, Series on Semiconductor Science and Technology, 6, Gil, B., Ed. (Oxford University Press, Oxford, UK, 1998), p. 70.CrossRefGoogle Scholar
Morkoç, H., Handbook of Nitride Semiconductors and Devices (Wiley-VCH Verlag GmbH, Berlin, 2008 vols. 1–3).Google Scholar
Davis, R.F., in Comprehensive Semiconductor Science and Technology, Bhattacharya, P., Fornari, R., Kamimura, H., Eds. (Elsevier, Amsterdam, 2011), vol. 3 p. 339.CrossRefGoogle Scholar
Liu, H., Bertolet, D.C., Rogers, J.W., Surf. Sci. 320, 145 (1994).CrossRefGoogle Scholar