Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T12:33:12.083Z Has data issue: false hasContentIssue false

Subnanosecond magnetization dynamics driven by strain waves

Published online by Cambridge University Press:  09 November 2018

Michael Foerster
Affiliation:
ALBA Synchrotron, Spain; mfoerster@cells.es
Lucia Aballe
Affiliation:
ALBA Synchrotron, Spain; laballe@cells.es
Joan Manel Hernàndez
Affiliation:
Department of Condensed Matter Physics, University of Barcelona, Spain; jm_hernandez@ub.edu
Ferran Macià
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Spain; fmacia@icmab.es
Get access

Abstract

The magnetic properties of a magnetic material can be modified by elastic deformation—termed the magnetoelastic effect. This effect is considered an alternative approach to magnetic fields for the low-power control of magnetization states of nanostructures since it avoids charge currents that create heat dissipation. This article describes the effects of dynamic strain accompanying a surface acoustic wave on magnetic nano-elements. We use a technique based on stroboscopic x-ray microscopy to simultaneously image the evolution of both strain and magnetization at the nanometer length and picosecond time scales. The study shows that there is a delayed response of the magnetization to dynamic strain, adjustable by the magnetic properties of the material. The presented analysis provides insights into dynamic magnetoelastic coupling in nanostructures with implications for the design of strain-controlled nanodevices.

Type
Materials for Strain-Mediated Magnetoelectric Systems
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akerman, J., Science 308, 508 (2005).CrossRefGoogle Scholar
Locatelli, N., Cros, V., Grollier, J., Nat. Mater. 13, 11 (2014).CrossRefGoogle Scholar
Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.H., Kumar, A., Wang, C.H., Melville, A., Adamo, C., Sheng, G., Chu, Y.H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G, Spaldin, N.A., Martin, L.W., Rameshe, R., Science 326, 977 (2009).CrossRefGoogle Scholar
Si, C., Sun, Z., Liu, F., Nanoscale 8, 3207 (2016).CrossRefGoogle Scholar
Lei, N., Devolder, T., Agnus, G., Aubert, P., Daniel, L., Kim, J.-V., Zhao, W., Trypiniotis, T., Cowburn, R.P., Chappert, C., Ravelosona, D., Lecour, P., Nat. Commun. 4, 1378 (2013).CrossRefGoogle Scholar
Buzzi, M., Chopdekar, R.V., Hockel, J.L., Bur, A., Wu, T., Pilet, N., Warnicke, P., Carman, G.P., Heyderman, L.J., Nolting, F., Phys. Rev. Lett. 111, 027204 (2013).CrossRefGoogle Scholar
Halley, D., Najjari, N., Majjad, H., Joly, L., Ohresser, P., Scheurer, F., Ulhaq-Bouillet, C., Berciaud, S., Doudin, B., Henry, Y., Nat. Commun. 5, 3167 (2014).CrossRefGoogle Scholar
Li, P., Chen, A., Li, D., Zhao, Y., Zhang, S., Yang, L., Liu, Y., Zhu, M., Zhang, H., Han, X., Adv. Mater. 26, 4320 (2014).CrossRefGoogle Scholar
Finizio, S., Foerster, M., Buzzi, M., Krüger, B., Jourdan, M., Vaz, C.A.F., Hockel, J., Miyawaki, T., Tkach, A., Valencia, S., Kronast, F., Carman, G.P., Nolting, F., Kläui, M., Phys. Rev. Appl. 1, 021001 (2014).CrossRefGoogle Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A, Ramesh, R., Science 303, 661 (2004).CrossRefGoogle Scholar
Hernandez, J.M., Santos, P.V., Macià, F., García-Santiago, A., Tejada, J., Appl. Phys. Lett. 88, 012503 (2006).CrossRefGoogle Scholar
Davis, S., Baruth, A., Adenwalla, S., Appl. Phys. Lett. 97, 232507 (2010).CrossRefGoogle Scholar
Weiler, M., Dreher, L., Heeg, C., Huebl, H., Gross, R., Brandt, M.S., Goennenwein, S.T.B., Phys. Rev. Lett. 106, 117601 (2011).CrossRefGoogle Scholar
Weiler, M., Huebl, H., Goerg, F.S., Czeschka, F.D., Gross, R., Goennenwein, S.T.B., Phys. Rev. Lett. 108, 176601 (2012).CrossRefGoogle Scholar
Thevenard, L., Camara, I.S., Majrab, S., Bernard, M., Rovillain, P., Lemaître, A., Gourdon, C., Duquesne, J.-Y., Phys. Rev. B Condens. Matter 93, 134430 (2016).CrossRefGoogle Scholar
Labanowski, D., Jung, A., Salahuddin, S., Appl. Phys. Lett. 111, 102904 (2017).CrossRefGoogle Scholar
Foerster, M., Macià, F., Statuto, N., Finizio, S., Hernández-Mínguez, A., Lendínez, S., Santos, P.V., Fontcuberta, J., Hernàndez, J.M., Klaeui, M., Aballe, L., Nat. Commun. 8, 407 (2017).CrossRefGoogle Scholar
Aballe, L., Foerster, M., Pellegrin, E., Nicolas, J., Ferrer, S., J. Synchrotron Radiat. 22, 745 (2015).CrossRefGoogle Scholar
Foerster, M., Prat, J., Massana, V., Gonzalez, N., Fontsere, A., Molas, B., Matilla, O., Pellegrin, E., Aballe, L., Ultramicroscopy 171, 63 (2016).CrossRefGoogle Scholar
Auld, B.A., Acoustic Fields and Waves in Solids, Vol. 2 (Wiley, New York, 1973).Google Scholar
Lewis, M.F., “On Rayleigh Waves and Related Propagating Acoustic Waves,” in Rayleigh-Wave Theory and Application, Springer Series on Wave Phenomena, vol. 2, Ash, E.A, Paige, E.G.S., Eds. (Springer, Berlin, 1985), pp. 3758.CrossRefGoogle Scholar
van Waeyenberge, B., Puzic, A., Stoll, H., Chou, K.W., Tyliszczak, T., Hertel, R., Fähnle, M., Brückl, H., Rott, K., Reiss, G., Neudecker, I., Weiss, D., Back, C.H., Schütz, G., Nature 444, 461 (2006).CrossRefGoogle Scholar